Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.

  • Shuli Li‎ et al.
  • PloS one‎
  • 2013‎

Neural crest-derived (FOb) and mesoderm-derived (POb) calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.


Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture.

  • David E Sahar‎ et al.
  • Developmental biology‎
  • 2005‎

Cranial suture development involves a complex interaction of genes and tissues derived from neural crest cells (NCC) and paraxial mesoderm. In mice, the posterior frontal (PF) suture closes during the first month of life while other sutures remain patent throughout the life of the animal. Given the unique NCC origin of PF suture complex (analogous to metopic suture in humans), we performed quantitative real-time PCR and immunohistochemistry to study the expression pattern of the NCC determinant gene Sox9 and select markers of extracellular matrix. Our results indicated a unique up-regulated expression of Sox9, a regulator of chondrogenesis, during initiation of PF suture closure, along with the expression of specific cartilage markers (Type II Collagen and Type X Collagen), as well as cartilage tissue formation in the PF suture. This process was followed by expression of bone markers (Type I Collagen and Osteocalcin), suggesting endochondral ossification. Moreover, we studied the effect of haploinsufficiency of the NCC determinant gene Sox9 in the NCC derived PF suture complex. A decrease in dosage of Sox9 by haploinsufficiency in NCC-derived tissues resulted in delayed PF suture closure. These results demonstrate a unique development of the PF suture complex and the role of Sox9 as an important contributor to timely and proper closure of the PF suture through endochondral ossification.


Partial Tendon Injury at the Tendon-to-Bone Enthesis Activates Skeletal Stem Cells.

  • Ashley L Titan‎ et al.
  • Stem cells translational medicine‎
  • 2022‎

The tendon enthesis plays a critical role in facilitating movement and reducing stress within joints. Partial enthesis injuries heal in a mechanically inferior manner and never achieve healthy tissue function. The cells responsible for tendon-to-bone healing remain incompletely characterized and their origin is unknown. Here, we evaluated the putative role of mouse skeletal stem cells (mSSCs) in the enthesis after partial-injury. We found that mSSCs were present at elevated levels within the enthesis following injury and that these cells downregulated TGFβ signaling pathway elements at both the RNA and protein levels. Exogenous application of TGFβ post-injury led to a reduced mSSC response and impaired healing, whereas treatment with a TGFβ inhibitor (SB43154) resulted in a more robust mSSC response. Collectively, these data suggest that mSSCs may augment tendon-to-bone healing by dampening the effects of TGFβ signaling within the mSSC niche.


An Evolutionary Conserved Signaling Network Between Mouse and Human Underlies the Differential Osteoskeletal Potential of Frontal and Parietal Calvarial Bones.

  • Siddharth Menon‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The mammalian calvarial vault is an ancient and highly conserved structure among species, however, the mechanisms governing osteogenesis of the calvarial vault and how they might be conserved across mammalian species remain unclear. The aim of this study was to determine if regional differences in osteogenic potential of the calvarial vault, first described in mice, extend to humans. We derived human frontal and parietal osteoblasts from fetal calvarial tissue, demonstrating enhanced osteogenic potential both in vitro and in vivo of human frontal derived osteoblasts compared to parietal derived osteoblasts. Furthermore, we found shared differential signaling patterns in the canonical WNT, TGF-β, BMP, and FGF pathways previously described in the mouse to govern these regional differences in osteogenic potential. Taken together, our findings unveil evolutionary conserved similarities both at functional and molecular level between the mouse and human calvarial bones, providing further support that studies employing mouse models, are suitable for translational studies to human.


Skeletal Stem Cell-Schwann Cell Circuitry in Mandibular Repair.

  • R Ellen Jones‎ et al.
  • Cell reports‎
  • 2019‎

Regenerative paradigms exhibit nerve dependency, including regeneration of the mouse digit tip and salamander limb. Denervation impairs regeneration and produces morphological aberrancy in these contexts, but the direct effect of innervation on the stem and progenitor cells enacting these processes is unknown. We devised a model to examine nerve dependency of the mouse skeletal stem cell (mSSC), the progenitor responsible for skeletal development and repair. We show that after inferior alveolar denervation, mandibular bone repair is compromised because of functional defects in mSSCs. We present mSSC reliance on paracrine factors secreted by Schwann cells as the underlying mechanism, with partial rescue of the denervated phenotype by Schwann cell transplantation and by Schwann-derived growth factors. This work sheds light on the nerve dependency of mSSCs and has implications for clinical treatment of mandibular defects.


Twist1-Haploinsufficiency Selectively Enhances the Osteoskeletal Capacity of Mesoderm-Derived Parietal Bone Through Downregulation of Fgf23.

  • Natalina Quarto‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Craniofacial development is a program exquisitely orchestrated by tissue contributions and regulation of genes expression. The basic helix-loop-helix (bHLH) transcription factor Twist1 expressed in the skeletal mesenchyme is a key regulator of craniofacial development playing an important role during osteoskeletogenesis. This study investigates the postnatal impact of Twist1 haploinsufficiency on the osteoskeletal ability and regeneration on two calvarial bones arising from tissues of different embryonic origin: the neural crest-derived frontal and the mesoderm-derived parietal bones. We show that Twist1 haplonsufficiency as well Twist1-sh-mediated silencing selectively enhanced osteogenic and tissue regeneration ability of mesoderm-derived bones. Transcriptomic profiling, gain-and loss-of-function experiments revealed that Twist1 haplonsufficiency triggers its selective activity on mesoderm-derived bone through a sharp downregulation of the bone-derived hormone Fgf23 that is upregulated exclusively in wild-type parietal bone.


Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(-/-) mice.

  • Björn Behr‎ et al.
  • PloS one‎
  • 2013‎

During the first month of life, the murine posterior-frontal suture (PF) of the cranial vault closes through endochondral ossification, while other sutures remain patent. These processes are tightly regulated by canonical Wnt signaling. Low levels of active canonical Wnt signaling enable endochondral ossification and therefore PF-suture closure, whereas constitutive activation of canonical Wnt causes PF-suture patency. We therefore sought to test this concept with a knockout mouse model. PF-sutures of Axin2(-/-) mice, which resemble a state of constantly activated canonical Wnt signaling, were investigated during the physiological time course of PF-suture closure and compared in detail with wild type littermates. Histological analysis revealed that the architecture in Axin2(-/-) PF-sutures was significantly altered in comparison to wild type. The distance between the endocranial layers was dramatically increased and suture closure was significantly delayed. Moreover, physiological endochondral ossification did not occur, rather an ectopic cartilage appeared between the endocranial and ectocranial bone layers at P7 which eventually involutes at P13. Quantitative PCR analysis showed the lack of Col10α1 upregulation in Axin2(-/-) PF-suture. Immunohistochemistry and gene expression analysis also revealed high levels of type II collagen as compared to type I collagen and absence of Mmp-9 in the cartilage of Axin2(-/-) PF-suture. Moreover, TUNEL staining showed a high percentage of apoptotic chondrocytes in Axin2(-/-) PF-sutures at P9 and P11 as compared to wild type. These data indicated that Axin2(-/-) PF-sutures lack physiological endochondral ossification, contain ectopic cartilage and display delayed suture closure.


Role of GSK-3β in the osteogenic differentiation of palatal mesenchyme.

  • Emily R Nelson‎ et al.
  • PloS one‎
  • 2011‎

The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.


Origin matters: differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones.

  • Natalina Quarto‎ et al.
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research‎
  • 2010‎

Calvarial bones arise from two embryonic tissues, namely, the neural crest and the mesoderm. In this study we have addressed the important question of whether disparate embryonic tissue origins impart variable osteogenic potential and regenerative capacity to calvarial bones, as well as what the underlying molecular mechanism(s). Thus, by performing in vitro and in vivo studies, we have investigated whether differences exist between neural crest-derived frontal and paraxial mesodermal-derived parietal bone. Of interest, our data indicate that calvarial bone osteoblasts of neural crest origin have superior potential for osteogenic differentiation. Furthermore, neural crest-derived frontal bone displays a superior capacity to undergo osseous healing compared with calvarial bone of paraxial mesoderm origin. Our study identified both in vitro and in vivo enhanced endogenous canonical Wnt signaling in frontal bone compared with parietal bone. In addition, we demonstrate that constitutive activation of canonical Wnt signaling in paraxial mesodermal-derived parietal osteoblasts mimics the osteogenic potential of frontal osteoblasts, whereas knockdown of canonical Wnt signaling dramatically impairs the greater osteogenic potential of neural crest-derived frontal osteoblasts. Moreover, fibroblast growth factor 2 (FGF-2) treatment induces phosphorylation of GSK-3beta and increases the nuclear levels of beta-catenin in osteoblasts, suggesting that enhanced activation of Wnt signaling might be mediated by FGF. Taken together, our data provide compelling evidence that indeed embryonic tissue origin makes a difference and that active canonical Wnt signaling plays a major role in contributing to the superior intrinsic osteogenic potential and tissue regeneration observed in neural crest-derived frontal bone.


Harnessing a Feasible and Versatile ex vivo Calvarial Suture 2-D Culture System to Study Suture Biology.

  • Natalina Quarto‎ et al.
  • Frontiers in physiology‎
  • 2022‎

As a basic science, craniofacial research embraces multiple facets spanning from molecular regulation of craniofacial development, cell biology/signaling and ultimately translational craniofacial biology. Calvarial sutures coordinate development of the skull, and the premature fusion of one or more, leads to craniosynostosis. Animal models provide significant contributions toward craniofacial biology and clinical/surgical treatments of patients with craniofacial disorders. Studies employing mouse models are costly and time consuming for housing/breeding. Herein, we present the establishment of a calvarial suture explant 2-D culture method that has been proven to be a reliable system showing fidelity with the in vivo harvesting procedure to isolate high yields of skeletal stem/progenitor cells from small number of mice. Moreover, this method allows the opportunity to phenocopying models of craniosynostosis and in vitro tamoxifen-induction of ActincreERT2;R26Rainbow suture explants to trace clonal expansion. This versatile method tackles needs of large number of mice to perform calvarial suture research.


Craniosynostosis of coronal suture in twist1 mice occurs through endochondral ossification recapitulating the physiological closure of posterior frontal suture.

  • Björn Behr‎ et al.
  • Frontiers in physiology‎
  • 2011‎

Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although much of the genetics and phenotypes in craniosynostosis syndromes is understood, less is known about the underlying ossification mechanism during suture closure. We have previously demonstrated that physiological closure of the posterior frontal suture occurs through endochondral ossification. Moreover, we revealed that antagonizing canonical Wnt-signaling in the sagittal suture leads to endochondral ossification of the suture mesenchyme and sagittal synostosis, presumably by inhibiting Twist1. Classic Saethre-Chotzen syndrome is characterized by coronal synostosis, and the haploinsufficient Twist1(+/-) mice represents a suitable model for studying this syndrome. Thus, we seeked to understand the underlying ossification process in coronal craniosynostosis in Twist1(+/-) mice. Our data indicate that coronal suture closure in Twist1(+/-) mice occurs between postnatal day 9 and 13 by endochondral ossification, as shown by histology, gene expression analysis, and immunohistochemistry. In conclusion, this study reveals that coronal craniosynostosis in Twist1(+/-) mice occurs through endochondral ossification. Moreover, it suggests that haploinsufficiency of Twist1 gene, a target of canonical Wnt-signaling, and inhibitor of chondrogenesis, mimics conditions of inactive canonical Wnt-signaling leading to craniosynostosis.


Activation of FGF signaling mediates proliferative and osteogenic differences between neural crest derived frontal and mesoderm parietal derived bone.

  • Shuli Li‎ et al.
  • PloS one‎
  • 2010‎

As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone.


Magnetic Nanoparticle-Based Upregulation of B-Cell Lymphoma 2 Enhances Bone Regeneration.

  • Elizabeth Brett‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

Clinical translation of cell-based strategies for tissue regeneration remains challenging because survival of implanted cells within hostile, hypoxic wound environments is uncertain. Overexpression of B-cell lymphoma 2 (Bcl-2) has been shown to inhibit apoptosis in implanted cells. The present study describes an "off the shelf" prefabricated scaffold integrated with magnetic nanoparticles (MNPs) used to upregulate Bcl-2 expression in implanted adipose-derived stromal cells for bone regeneration. Iron oxide cores were sequentially coated with branched polyethyleneimine, minicircle plasmid encoding green fluorescent protein and Bcl-2, and poly-β-amino ester. Through in vitro assays, increased osteogenic potential and biological resilience were demonstrated in the magnetofected group over control and nucleofected groups. Similarly, our in vivo calvarial defect study showed that magnetofection had an efficiency rate of 30%, which in turn resulted in significantly more healing compared with control group and nucleofected group. Our novel, prefabricated MNP-integrated scaffold allows for in situ postimplant temporospatial control of cell transfection to augment bone regeneration. Stem Cells Translational Medicine 2017;6:151-160.


Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis.

  • Siddharth Menon‎ et al.
  • Nature communications‎
  • 2021‎

Cranial sutures are major growth centers for the calvarial vault, and their premature fusion leads to a pathologic condition called craniosynostosis. This study investigates whether skeletal stem/progenitor cells are resident in the cranial sutures. Prospective isolation by FACS identifies this population with a significant difference in spatio-temporal representation between fusing versus patent sutures. Transcriptomic analysis highlights a distinct signature in cells derived from the physiological closing PF suture, and scRNA sequencing identifies transcriptional heterogeneity among sutures. Wnt-signaling activation increases skeletal stem/progenitor cells in sutures, whereas its inhibition decreases. Crossing Axin2LacZ/+ mouse, endowing enhanced Wnt activation, to a Twist1+/- mouse model of coronal craniosynostosis enriches skeletal stem/progenitor cells in sutures restoring patency. Co-transplantation of these cells with Wnt3a prevents resynostosis following suturectomy in Twist1+/- mice. Our study reveals that decrease and/or imbalance of skeletal stem/progenitor cells representation within sutures may underlie craniosynostosis. These findings have translational implications toward therapeutic approaches for craniosynostosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: