Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Structure-based insights into evolution of rhodopsins.

  • Dmitrii Zabelskii‎ et al.
  • Communications biology‎
  • 2021‎

Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor.


Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci.

  • Vladimir Gostev‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Coagulase-negative staphylococci (CoNS) for a long time were considered avirulent constituents of the human and warm-blooded animal microbiota. However, at present, S. epidermidis, S. haemolyticus, and S. hominis are recognized as opportunistic pathogens. Although linezolid is not registered for the treatment of CoNS infections, it is widely used off-label, promoting emergence of resistance. Bioinformatic analysis based on maximum-likelihood phylogeny and Bayesian clustering of the CoNS genomes obtained in the current study and downloaded from public databases revealed the existence of international linezolid-resistant lineages, each of which probably had a common predecessor. Linezolid-resistant S. epidermidis sequence-type (ST) 2 from Russia, France, and Germany formed a compact group of closely related genomes with a median pairwise single nucleotide polymorphism (SNP) difference of fewer than 53 SNPs, and a common ancestor of this lineage appeared in 1998 (1986-2006) before introduction of linezolid in practice. Another compact group of linezolid-resistant S. epidermidis was represented by ST22 isolates from France and Russia with a median pairwise SNP difference of 40; a common ancestor of this lineage appeared in 2011 (2008-2013). Linezolid-resistant S. hominis ST2 from Russia, Germany, and Brazil also formed a group with a high-level genome identity with median 25.5 core-SNP differences; the appearance of the common progenitor dates to 2003 (1996-2012). Linezolid-resistant S. hominis isolates from Russia demonstrated associated resistance to teicoplanin. Analysis of a midpoint-rooted phylogenetic tree of the group confirmed the genetic proximity of Russian and German isolates; Brazilian isolates were phylogenetically distant. repUS5-like plasmids harboring cfr were detected in S. hominis and S. haemolyticus.


Endocannabinoid involvement in endometriosis.

  • Natalia Dmitrieva‎ et al.
  • Pain‎
  • 2010‎

Endometriosis is a disease common in women that is defined by abnormal extrauteral growths of uterine endometrial tissue and associated with severe pain. Partly because how the abnormal growths become associated with pain is poorly understood, the pain is difficult to alleviate without resorting to hormones or surgery, which often produce intolerable side effects or fail to help. Recent studies in a rat model and women showed that sensory and sympathetic nerve fibers sprout branches to innervate the abnormal growths. This situation, together with knowledge that the endocannabinoid system is involved in uterine function and dysfunction and that exogenous cannabinoids were once used to alleviate endometriosis-associated pain, suggests that the endocannabinoid system is involved in both endometriosis and its associated pain. Herein, using a rat model, we found that CB1 cannabinoid receptors are expressed on both the somata and fibers of both the sensory and sympathetic neurons that innervate endometriosis's abnormal growths. We further found that CB1 receptor agonists decrease, whereas CB1 receptor antagonists increase, endometriosis-associated hyperalgesia. Together these findings suggest that the endocannabinoid system contributes to mechanisms underlying both the peripheral innervation of the abnormal growths and the pain associated with endometriosis, thereby providing a novel approach for the development of badly-needed new treatments.


Sprouted innervation into uterine transplants contributes to the development of hyperalgesia in a rat model of endometriosis.

  • Stacy L McAllister‎ et al.
  • PloS one‎
  • 2012‎

Endometriosis is an enigmatic painful disorder whose pain symptoms remain difficult to alleviate in large part because the disorder is defined by extrauteral endometrial growths whose contribution to pain is poorly understood. A rat model (ENDO) involves autotransplanting on abdominal arteries uterine segments that grow into vascularized cysts that become innervated with sensory and sympathetic fibers. ENDO rats exhibit vaginal hyperalgesia. We used behavioral, physiological, and immunohistochemical methods to test the hypothesis that cyst innervation contributes to the development of this hyperalgesia after transplant. Rudimentary sensory and sympathetic innervation appeared in the cysts at two weeks, sprouted further and more densely into the cyst wall by four weeks, and matured by six weeks post-transplant. Sensory fibers became abnormally functionally active between two and three weeks post-transplant, remaining active thereafter. Vaginal hyperalgesia became significant between four and five weeks post-transplant, and stabilized after six to eight weeks. Removing cysts before they acquired functional innervation prevented vaginal hyperalgesia from developing, whereas sham cyst removal did not. Thus, abnormally-active innervation of ectopic growths occurs before hyperalgesia develops, supporting the hypothesis. These findings suggest that painful endometriosis can be classified as a mixed inflammatory/neuropathic pain condition, which opens new avenues for pain relief. The findings also have implications beyond endometriosis by suggesting that functionality of any transplanted tissue can be influenced by the innervation it acquires.


Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A, NIHTVBi007-A, NIHTVBi008-A) from 5 CADASIL patients with NOTCH3 mutation.

  • Guibin Chen‎ et al.
  • Stem cell research‎
  • 2020‎

We have successfully generated induced pluripotent stem cell (iPSC) lines derived from peripheral blood mononuclear cells of five patients with Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). These cells carry the genetic NOTCH3 mutation present in their parental cells. These iPSC cells exhibited normal karyotype and phenotype, which were sustained through propagation. Furthermore, these iPSCs displayed the capacity of differentiating toward the three germ layers in vitro.


Generation of human induced pluripotent stem cell lines (NIHTVBi011-A, NIHTVBi012-A, NIHTVBi013-A) from autosomal dominant Hyper IgE syndrome (AD-HIES) patients carrying STAT3 mutation.

  • Hui Jin‎ et al.
  • Stem cell research‎
  • 2019‎

Autosomal dominant Hyper IgE syndrome (AD-HIES), a rare immune deficiency affecting fewer than one per million people, is caused by heterozygous deleterious mutations in STAT3. STAT3 signaling plays crucial roles in basic cellular functions affecting broad aspects of cellular homeostasis. Accordingly, in addition to immunological deficits, patients experience severe multisystem non-immunological features. Human induced pluripotent stem cells (hiPSC) are well established as in vivo disease models for various human pathologies. We describe the generation of iPSC from three AD-HIES patients. These iPSCs express pluripotency markers, differentiate into three germ layers, have normal karyotype and similar genome identity to parental cells.


Generation of human induced pluripotent stem cells from individuals with a homozygous CCR5Δ32 mutation.

  • Guibin Chen‎ et al.
  • Stem cell research‎
  • 2019‎

Chemokine receptor 5 (CCR5) is the primary coreceptor for HIV entry into macrophages. Individuals with a homozygous deletion of 32 bp in the CCR5 gene (CCR5Δ32) are highly resistant to HIV infection (Samson et al., 1996). Allogeneic stem cell transplantation from a healthy donor with the homozygous CCR5Δ32 variant to an HIV positive individual has demonstrated efficient long-term control of HIV. We identified three individuals with this homozygous CCR5Δ32 variant, and successfully generated induced pluripotent stem cell (iPSC) lines from their dermal fibroblasts. The iPSCs lines carrying homozygous CCR5Δ32 variant displayed phenotypically normal and the potential to differentiation toward the three germ layers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: