Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Base excision repair capacity in informing healthspan.

  • Boris M Brenerman‎ et al.
  • Carcinogenesis‎
  • 2014‎

Base excision repair (BER) is a frontline defense mechanism for dealing with many common forms of endogenous DNA damage, several of which can drive mutagenic or cell death outcomes. The pathway engages proteins such as glycosylases, abasic endonucleases, polymerases and ligases to remove substrate modifications from DNA and restore the genome back to its original state. Inherited mutations in genes related to BER can give rise to disorders involving cancer, immunodeficiency and neurodegeneration. Studies employing genetically defined heterozygous (haploinsufficient) mouse models indicate that partial reduction in BER capacity can increase vulnerability to both spontaneous and exposure-dependent pathologies. In humans, measurement of BER variation has been imperfect to this point, yet tools to assess BER in epidemiological surveys are steadily evolving. We provide herein an overview of the BER pathway and discuss the current efforts toward defining the relationship of BER defects with disease susceptibility.


CSB interacts with SNM1A and promotes DNA interstrand crosslink processing.

  • Teruaki Iyama‎ et al.
  • Nucleic acids research‎
  • 2015‎

Cockayne syndrome (CS) is a premature aging disorder characterized by photosensitivity, impaired development and multisystem progressive degeneration, and consists of two strict complementation groups, A and B. Using a yeast two-hybrid approach, we identified the 5'-3' exonuclease SNM1A as one of four strong interacting partners of CSB. This direct interaction was confirmed using purified recombinant proteins-with CSB able to modulate the exonuclease activity of SNM1A on oligonucleotide substrates in vitro-and the two proteins were shown to exist in a common complex in human cell extracts. CSB and SNM1A were also found, using fluorescently tagged proteins in combination with confocal microscopy and laser microirradiation, to be recruited to localized trioxsalen-induced ICL damage in human cells, with accumulation being suppressed by transcription inhibition. Moreover, SNM1A recruitment was significantly reduced in CSB-deficient cells, suggesting coordination between the two proteins in vivo. CSB-deficient neural cells exhibited increased sensitivity to DNA crosslinking agents, particularly, in a non-cycling, differentiated state, as well as delayed ICL processing as revealed by a modified Comet assay and γ-H2AX foci persistence. The results indicate that CSB coordinates the resolution of ICLs, possibly in a transcription-associated repair mechanism involving SNM1A, and that defects in the process could contribute to the post-mitotic degenerative pathologies associated with CS.


Imaging glutathione depletion in the rat brain using ascorbate-derived hyperpolarized MR and PET probes.

  • Hecong Qin‎ et al.
  • Scientific reports‎
  • 2018‎

Oxidative stress is a critical feature of several common neurologic disorders. The brain is well adapted to neutralize oxidative injury by maintaining a high steady-state concentration of small-molecule intracellular antioxidants including glutathione in astrocytes and ascorbic acid in neurons. Ascorbate-derived imaging probes for hyperpolarized 13C magnetic resonance spectroscopy and positron emission tomography have been used to study redox changes (antioxidant depletion and reactive oxygen species accumulation) in vivo. In this study, we applied these imaging probes to the normal rat brain and a rat model of glutathione depletion. We first studied hyperpolarized [1-13C]dehydroascorbate in the normal rat brain, demonstrating its robust conversion to [1-13C]vitamin C, consistent with rapid transport of the oxidized form across the blood-brain barrier. We next showed that the kinetic rate of this conversion decreased by nearly 50% after glutathione depletion by diethyl maleate treatment. Finally, we showed that dehydroascorbate labeled for positron emission tomography, namely [1-11C]dehydroascorbate, showed no change in brain signal accumulation after diethyl maleate treatment. These results suggest that hyperpolarized [1-13C]dehydroascorbate may be used to non-invasively detect oxidative stress in common disorders of the brain.


Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection.

  • Dorjbal Dorjsuren‎ et al.
  • PloS one‎
  • 2012‎

The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.


Human RECQL5 participates in the removal of endogenous DNA damage.

  • Takashi Tadokoro‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

Human RECQL5 is a member of the RecQ helicase family, which maintains genome stability via participation in many DNA metabolic processes, including DNA repair. Human cells lacking RECQL5 display chromosomal instability. We find that cells depleted of RECQL5 are sensitive to oxidative stress, accumulate endogenous DNA damage, and increase the cellular poly(ADP-ribosyl)ate response. In contrast to the RECQ helicase family members WRN, BLM, and RECQL4, RECQL5 accumulates at laser-induced single-strand breaks in normal human cells. RECQL5 depletion affects the levels of PARP-1 and XRCC1, and our collective results suggest that RECQL5 modulates and/or directly participates in base excision repair of endogenous DNA damage, thereby promoting chromosome stability in normal human cells.


Modulation of DNA base excision repair during neuronal differentiation.

  • Peter Sykora‎ et al.
  • Neurobiology of aging‎
  • 2013‎

Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.


Bitter taste stimuli induce differential neural codes in mouse brain.

  • David M Wilson‎ et al.
  • PloS one‎
  • 2012‎

A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.


Novel tricyclic pyrazole BRAF inhibitors with imidazole or furan central scaffolds.

  • Dan Niculescu-Duvaz‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2010‎

V-RAF murine sarcoma viral oncogene homolog B1 (BRAF) is a serine/threonine-specific protein kinase that is mutated with high frequency in cutaneous melanoma, and many other cancers. Inhibition of mutant BRAF is an attractive therapeutic approach for the treatment of melanoma. A triarylimidazole BRAF inhibitor bearing a phenylpyrazole group (dimethyl-[2-(4-{5-[4-(1H-pyrazol-3-yl)-phenyl]-4-pyridin-4-yl-1H-imidazol-2-yl}-phenoxy)-ethyl]-amine, 1a) was identified as an active BRAF inhibitor. Based on this starting point, we synthesized a series of analogues leading to the discovery of 6-{2-[4-(4-methyl-piperazin-1-yl)-phenyl]-5-pyridin-4-yl-3H-imidazol-4-yl}-2,4-dihydro-indeno[1,2-c]pyrazole (1j), with nanomolar activity in three assays: inhibition of purified mutant BRAF activity in vitro; inhibition of oncogenic BRAF-driven extracellular regulated kinase (ERK) activation in BRAF mutant melanoma cell lines; and inhibition of proliferation in these cells.


Effect of protein binding on ultrafast DNA dynamics: characterization of a DNA:APE1 complex.

  • Sobhan Sen‎ et al.
  • Biophysical journal‎
  • 2005‎

Synthetic oligonucleotides with a fluorescent coumarin group replacing a basepair have been used in recent time-resolved Stokes-shift experiments to measure DNA dynamics on the femtosecond to nanosecond timescales. Here, we show that the APE1 endonuclease cleaves such a modified oligonucleotide at the abasic site opposite the coumarin with only a fourfold reduction in rate. In addition, a noncatalytic mutant (D210N) binds tightly to the same oligonucleotide, albeit with an 85-fold reduction in binding constant relative to a native oligonucleotide containing a guanine opposite the abasic site. Thus, the modified oligonucleotide retains substantial biological activity and serves as a useful model of native DNA. In the complex of the coumarin-containing oligonucleotide and the noncatalytic APE1, the dye's absorption spectrum is shifted relative to its spectrum in either water or within the unbound oligonucleotide. Thus the dye occupies a site within the DNA:protein complex. This result is consistent with modeling, which shows that the complex accommodates coumarin at the site of the orphaned base with little distortion of the native structure. Stokes-shift measurements of the complex show surprisingly little change in the dynamics within the 40 ps-40 ns time range.


The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta.

  • Jeanine A Harrigan‎ et al.
  • Nucleic acids research‎
  • 2006‎

Genome instability is a characteristic of cancer and aging, and is a hallmark of the premature aging disorder Werner syndrome (WS). Evidence suggests that the Werner syndrome protein (WRN) contributes to the maintenance of genome integrity through its involvement in DNA repair. In particular, biochemical evidence indicates a role for WRN in base excision repair (BER). We have previously reported that WRN helicase activity stimulates DNA polymerase beta (pol beta) strand displacement synthesis in vitro. In this report we demonstrate that WRN exonuclease activity can act cooperatively with pol beta, a polymerase lacking 3'-5' proofreading activity. Furthermore, using small interference RNA technology, we demonstrate that WRN knockdown cells are hypersensitive to the alkylating agent methyl methanesulfonate, which creates DNA damage that is primarily repaired by the BER pathway. In addition, repair assays using whole cell extracts from WRN knockdown cells indicate a defect in long patch (LP) BER. These findings demonstrate that WRN plays a direct role in the repair of methylation-induced DNA damage, and suggest a role for both WRN helicase and exonuclease activities together with pol beta during LP BER.


APE1 deficiency promotes cellular senescence and premature aging features.

  • Mengxia Li‎ et al.
  • Nucleic acids research‎
  • 2018‎

Base excision repair (BER) handles many forms of endogenous DNA damage, and apurinic/apyrimidinic endonuclease 1 (APE1) is central to this process. Deletion of both alleles of APE1 (a.k.a. Apex1) in mice leads to embryonic lethality, and deficiency in cells can promote cell death. Unlike most other BER proteins, APE1 expression is inversely correlated with cellular senescence in primary human fibroblasts. Depletion of APE1 via shRNA induced senescence in normal human BJ fibroblasts, a phenotype that was not seen in counterpart cells expressing telomerase. APE1 knock-down in primary fibroblasts resulted in global DNA damage accumulation, and the induction of p16INK4a and p21WAF1 stress response pathways; the DNA damage response, as assessed by γ-H2AX, was particularly pronounced at telomeres. Conditional knock-out of Apex1 in mice at post-natal day 7/12 resulted in impaired growth, reduced organ size, and increased cellular senescence. The effect of Apex1 deletion at post-natal week 6 was less obvious, other than cellular senescence, until ∼8-months of age, when premature aging characteristics, such as hair loss and impaired wound healing, were seen. Low APE1 expression in patient cancer tissue also correlated with increased senescence. Our results point to a key role for APE1 in regulating cellular senescence and aging features, with telomere status apparently affecting the outcome.


A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties.

  • Andrew C Nyborg‎ et al.
  • PloS one‎
  • 2016‎

Humans and higher primates are unique in that they lack uricase, the enzyme capable of oxidizing uric acid. As a consequence of this enzyme deficiency, humans have high serum uric acid levels. In some people, uric acid levels rise above the solubility limit resulting in crystallization in joints, acute inflammation in response to those crystals causes severe pain; a condition known as gout. Treatment for severe gout includes injection of non-human uricase to reduce serum uric acid levels. Krystexxa® is a hyper-PEGylated pig-baboon chimeric uricase indicated for chronic refractory gout that induces an immunogenic response in 91% of treated patients, including infusion reactions (26%) and anaphylaxis (6.5%). These properties limit its use and effectiveness. An innovative approach has been used to develop a therapeutic uricase with improved properties such as: soluble expression, neutral pH solubility, high E. coli expression level, thermal stability, and excellent activity. More than 200 diverse uricase sequences were aligned to guide protein engineering and reduce putative sequence liabilities. A single uricase lead candidate was identified, which showed low potential for immunogenicity in >200 human donor samples selected to represent diverse HLA haplotypes. Cysteines were engineered into the lead sequence for site specific PEGylation and studies demonstrated >95% PEGylation efficiency. PEGylated uricase retains enzymatic activity in vitro at neutral pH, in human serum and in vivo (rats and canines) and has an extended half-life. In canines, an 85% reduction in serum uric acid levels was observed with a single subcutaneous injection. This PEGylated, non-immunogenic uricase has the potential to provide meaningful benefits to patients with gout.


A Novel Radioligand Reveals Tissue Specific Pharmacological Modulation of Glucocorticoid Receptor Expression with Positron Emission Tomography.

  • Yangjie Huang‎ et al.
  • ACS chemical biology‎
  • 2020‎

The complexity of glucocorticoid receptor (GR) signaling cannot be measured with direct tissue analysis in living subjects, which has stifled our understanding of GR's role in human physiology or disease and impeded the development of selective GR modulators. Herein, we report 18F-5-(4-fluorobenzyl)-10-methoxy-2,2,4-trimethyl-2,5-dihydro-1H-chromeno[3,4-f]quinoline (18F-YJH08), a radioligand that enables noninvasive measurements of tissue autonomous GR expression levels in vivo with positron emission tomography (PET). YJH08 potently binds GR (Ki ∼ 0.4 nM) with ∼100-fold selectivity compared to nuclear hormone receptors in the same subfamily. 18F-YJH08 was prepared via Cu(OTf)2(py)4-mediated radiofluorination of an arylboronic acid pinacol ester with ∼12% decay corrected radiochemical yield from the starting 18F-fluoride ion. We applied treatment with the tissue-wide GR agonist dexamethasone and adrenalectomy and generated an adipocyte specific GR knockout mouse to show that 18F-YJH08 specifically binds GR in normal mouse tissues, including those for which aberrant GR expression is thought to drive severe diseases (e.g., brain, adipose tissue, kidneys). Remarkably, 18F-YJH08 PET also revealed that JG231, a potent and bioavailable HSP70 inhibitor, selectively degrades GR only in the adipose tissue of mice, a finding that foreshadows how GR targeted PET might be integrated into drug discovery to screen for selective GR modulation at the tissue level, beyond the historical screening that was performed at the transcriptional level. In summary, 18F-YJH08 enables a quantitative assessment of GR expression levels in real time among multiple tissues simultaneously, and this technology is a first step toward unraveling the daunting complexity of GR signaling and rationally engineering tissue specific therapeutic modulators in vivo.


11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans.

  • Alvaro A Ordonez‎ et al.
  • JCI insight‎
  • 2022‎

Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models. 11C-PABA PET imaging selectively detected infections in muscle, intervertebral discs, and methicillin-resistant Staphylococcus aureus-infected orthopedic implants. In what we believe to be first-in-human studies in healthy participants, 11C-PABA was safe, well-tolerated, and had a favorable biodistribution, with low background activity in the lungs, muscles, and brain. 11C-PABA has the potential for clinical translation to detect and localize a broad range of bacteria.


Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers.

  • Niranjan Meher‎ et al.
  • ACS applied materials & interfaces‎
  • 2022‎

Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.


Imaging 6-Phosphogluconolactonase Activity in Brain Tumors In Vivo Using Hyperpolarized δ-[1-13C]gluconolactone.

  • Georgios Batsios‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging.


Clinically Translatable Hyperpolarized 13C Bicarbonate pH Imaging Method for Use in Prostate Cancer.

  • Changhua Mu‎ et al.
  • ACS sensors‎
  • 2023‎

Solid tumors such as prostate cancer (PCa) commonly develop an acidic microenvironment with pH 6.5-7.2, owing to heterogeneous perfusion, high metabolic activity, and rapid cell proliferation. In preclinical prostate cancer models, disease progression is associated with a decrease in tumor extracellular pH, suggesting that pH imaging may reflect an imaging biomarker to detect aggressive and high-risk disease. Therefore, we developed a hyperpolarized carbon-13 MRI method to image the tumor extracellular pH (pHe) and prepared it for clinical translation for detection and risk stratification of PCa. This method relies on the rapid breakdown of hyperpolarized (HP) 1,2-glycerol carbonate (carbonyl-13C) via base-catalyzed hydrolysis to produce HP 13CO32-, which is neutralized and converted to HP H13CO3-. After injection, HP H13CO3- equilibrates with HP 13CO2 in vivo and enables the imaging of pHe. Using insights gleaned from mechanistic studies performed in the hyperpolarized state, we solved issues of polarization loss during preparation in a clinical polarizer system. We successfully customized a reaction apparatus suitable for clinical application, developed clinical standard operating procedures, and validated the radiofrequency pulse sequence and imaging data acquisition with a wide range of animal models. The results demonstrated that we can routinely produce a highly polarized and safe HP H13CO3- contrast agent suitable for human injection. Preclinical imaging studies validated the reliability and accuracy of measuring acidification in healthy kidney and prostate tumor tissue. These methods were used to support an Investigational New Drug application to the U.S. Food and Drug Administration. This methodology is now ready to be implemented in human trials, with the ultimate goal of improving the management of PCa.


Imaging the Bacterial Cell Wall Using N-Acetyl Muramic Acid-Derived Positron Emission Tomography Radiotracers.

  • Sang Hee Lee‎ et al.
  • ACS sensors‎
  • 2023‎

Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.


Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.

  • Rachel Abbotts‎ et al.
  • Oncotarget‎
  • 2014‎

Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.


Altered endoribonuclease activity of apurinic/apyrimidinic endonuclease 1 variants identified in the human population.

  • Wan Cheol Kim‎ et al.
  • PloS one‎
  • 2014‎

Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in the DNA base excision repair pathway and cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. APE1 also has 3'-5' DNA exonuclease and 3' DNA phosphodiesterase activities, and regulates transcription factor DNA binding through its redox regulatory function. The human APE1 has recently been shown to endonucleolytically cleave single-stranded regions of RNA. Towards understanding the biological significance of the endoribonuclease activity of APE1, we examined eight different amino acid substitution variants of APE1 previously identified in the human population. Our study shows that six APE1 variants, D148E, Q51H, I64V, G241R, R237A, and G306A, exhibit a 76-85% reduction in endoribonuclease activity against a specific coding region of the c-myc RNA, yet fully retain the ability to cleave apurinic/apyrimidinic DNA. We found that two APE1 variants, L104R and E126D, exhibit a unique RNase inhibitor-resistant endoribonuclease activity, where the proteins cleave c-myc RNA 3' of specific single-stranded guanosine residues. Expression of L104R and E126D APE1 variants in bacterial Origami cells leads to a 60-80% reduction in colony formation and a 1.5-fold increase in cell doubling time, whereas the other variants, which exhibit diminished endoribonuclease activity, had no effect. These data indicate that two human APE1 variants exhibit a unique endoribonuclease activity, which correlates with their ability to induce cytotoxicity or slow down growth in bacterial cells and supports the notion of their biological functionality.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: