Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 181 papers

Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

  • Hye Yeon Seo‎ et al.
  • PloS one‎
  • 2014‎

The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity. Furthermore, it was demonstrated that this treatment leads to improved osseointegration in vitro.


Synthesis and evaluation of the 2,4-diaminoquinazoline series as anti-tubercular agents.

  • Joshua Odingo‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2014‎

The 2,4-diaminoquinazoline class of compounds has previously been identified as an effective inhibitor of Mycobacterium tuberculosis growth. We conducted an extensive evaluation of the series for its potential as a lead candidate for tuberculosis drug discovery. Three segments of the representative molecule N-(4-fluorobenzyl)-2-(piperidin-1-yl)quinazolin-4-amine were examined systematically to explore structure-activity relationships influencing potency. We determined that the benzylic amine at the 4-position, the piperidine at 2-position and the N-1 (but not N-3) are key activity determinants. The 3-deaza analog retained similar activity to the parent molecule. Biological activity was not dependent on iron or carbon source availability. We demonstrated through pharmacokinetic studies in rats that good in vivo compound exposure is achievable. A representative compound demonstrated bactericidal activity against both replicating and non-replicating M. tuberculosis. We isolated and sequenced M. tuberculosis mutants resistant to this compound and observed mutations in Rv3161c, a gene predicted to encode a dioxygenase, suggesting that the compound may act as a pro-drug.


A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

  • Ji Hoon Park‎ et al.
  • Scientific reports‎
  • 2015‎

Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.


Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet.

  • Naresh Kumar‎ et al.
  • Scientific reports‎
  • 2014‎

Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.


The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure.

  • Myung-Jin Lee‎ et al.
  • Scientific reports‎
  • 2019‎

Titanium is commonly used as a biomaterial for dental implants. In this study, we investigated the antibacterial properties of titanium samples following treatment with a non-thermal atmospheric pressure plasma jet (NTAPPJ) on bacteria with two different cell wall structures, including gram-positive and gram-negative bacteria. The hydrophilicity and surface energy of titanium surfaces were significantly increased after NTAPPJ treatment without altering topographical features. Changes in the chemical composition and reductive potential were observed on the NTAPPJ-treated titanium surfaces. The adhesion and biofilm formation rate of bacteria were significantly reduced on the NTAPPJ-treated titanium surfaces compared with the untreated samples, which was confirmed by fluorescent imaging. Regarding the comparison between gram-positive and gram-negative bacteria, both adhesion and the biofilm formation rate were significantly lower for gram-negative bacteria than gram-positive bacteria on samples treated for longer durations with the NTAPPJ. Transmission electron microscopy imaging showed a comparably more disruptive membrane structure of gram-negative bacteria than gram-positive bacteria on the NTAPPJ-treated surfaces. Our results indicated that the NTAPPJ treatment could be useful for preventing bacterial adhesion and biofilm formation on titanium dental implant surfaces, while the reductive potential on surfaces treated by the NTAPPJ could cause oxidation of bacteria, which could be more sensitive to gram-negative bacteria due to differences in the cell wall structure.


Extracellular Vesicles Released by Human Induced-Pluripotent Stem Cell-Derived Cardiomyocytes Promote Angiogenesis.

  • Julie A Dougherty‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Although cell survival post-transplantation is very low, emerging evidence using stem cell therapy for myocardial repair points toward a primary role of paracrine signaling mechanisms as the basis for improved cardiac function, decreased fibrosis, and increased angiogenesis. Recent studies have demonstrated that extracellular vesicles (EVs) such as exosomes secreted by stem cells stimulate angiogenesis, provide cytoprotection, and modulate apoptosis. However, the angiogenic potential of EVs secreted from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), a terminally differentiated cell type, has not been elucidated yet. Therefore, the main objective of this study is to isolate, characterize, and evaluate the in vitro angiogenic potential of EVs collected from hiPSC-CM conditioned media. The hiPSC-CM were cultured for 2 weeks and EVs were isolated from cell culture medium. Isolated EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis, and immunoblotting. Furthermore, the angiogenic potential of these EVs was evaluated by tube formation, wound-healing, and cell-proliferation assays in bovine aortic endothelial cells (BAEC). In addition, gene expression levels of growth factors was evaluated in hiPSC-derived endothelial cells (hiPSC-EC) treated with hiPSC-CM-derived EV (CM-EVs) to assess their role in promoting angiogenesis. TEM imaging of CM-EVs showed a presence of a double-membrane bound structure, which is a characteristic of EV. Nanoparticle tracking analysis further confirmed the size and shape of the secreted particles to be consistent with EVs. Furthermore, EV-specific markers (CD63 and HSP70) were enriched in these particles as illustrated by immunoblotting. Most importantly, BAEC treated with 100 μg/ml of CM-EVs showed significant increases in tube formation, wound closure, and cell proliferation as compared to control (no-EVs). Finally, treatment of hiPSC-EC with CM-EVs induced increased expression of pro-angiogenic growth factors by the endothelial cells. Overall, our results demonstrated that EVs isolated from hiPSC-CM enhance angiogenesis in endothelial cells. This acellular/cell-free approach constitutes a potential translational therapeutic to induce angiogenesis in patients with myocardial infarction.


Active case finding among marginalised and vulnerable populations reduces catastrophic costs due to tuberculosis diagnosis.

  • Hemant Deepak Shewade‎ et al.
  • Global health action‎
  • 2018‎

There is limited evidence on whether active case finding (ACF) among marginalised and vulnerable populations mitigates the financial burden during tuberculosis (TB) diagnosis.


The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor.

  • Joey De Backer‎ et al.
  • Redox biology‎
  • 2018‎

Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.


Annulo-Nucleoplasty Using Disc-Fx in the Management of Degenerative Lumbar Disc Pathology: How Long Can the Effect Last?

  • Naresh Kumar‎ et al.
  • Global spine journal‎
  • 2018‎

Prospective analysis.


Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species.

  • Priyanka Shaw‎ et al.
  • Scientific reports‎
  • 2018‎

There is a growing body of literature that recognizes the importance of plasma treated water (PTW) for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.


Structural elucidation and molecular docking of ferulic acid from Parthenium hysterophorus possessing COX-2 inhibition activity.

  • Naresh Kumar‎ et al.
  • 3 Biotech‎
  • 2015‎

In this study, isolation of ferulic acid from Parthenium hysterophorus L. followed by the structural characterization using elemental analysis, FT-IR, NMR, ESI-MS and XRD has been carried out. The molecular geometry, harmonic vibrational frequencies and structural parameters were computed by density functional theory with the 6-311G** basis set. Comparisons between experimental and simulated data of spectroscopic analysis and geometrical parameters was accomplished for their statistical validation and the values of correlation coefficient for 1H and 13C-NMR chemical shifts, bond lengths and bond angles were found to be 0.934, 0.951, 0.943 and 0.961, respectively. The HOMO and LUMO analyses were used to find out the charge transfer within the ferulic acid. Thermal studies were carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG) to confirm the effect of temperature upon the ferulic acid. Furthermore, the binding study of the optimized geometry of ferulic acid has been envisioned with cyclooxygenase-2 for its activity inhibition by molecular docking.


Antibacterial activity and effect on gingival cells of microwave-pulsed non-thermal atmospheric pressure plasma in artificial saliva.

  • Sang-Hee Seo‎ et al.
  • Scientific reports‎
  • 2017‎

Although various oral pathogens are inactivated by non-thermal atmospheric pressure plasma (NTAPP), the in vivo effects of NTAPP are poorly understood. The first aim of this study was to examine the antibacterial activity of microwave-pulsed NTAPP against Staphylococcus aureus in artificial saliva to mimic oral environmental conditions. The second aim was to determine the influence of microwave-pulsed NTAPP on human gingival fibroblasts (HGFs). The microwave-pulsed NTAPP reduced bacterial viability (as measured by colony forming units [CFU]) to a greater extent in artificial saliva than in saline. Extending the post-treatment incubation time increased bacterial inactivation in artificial saliva compared to saline. HGFs viability was unaffected by microwave-pulsed NTAPP for bacterial inactivation. Rather, HGFs proliferation increased after a 5-min microwave-pulsed NTAPP. Less tumor necrosis factor alpha was released by microwave-pulsed NTAPP-treated HGFs stimulated with lipopolysaccharide (LPS) than by untreated, LPS-stimulated HGFs; thus, plasma appeared to suppress the inflammatory response. Our study suggests that microwave-pulsed NTAPP may have stronger in vivo antibacterial activity than in vitro activity, and that microwave-pulsed NTAPP may have the additional advantage of suppressing gingival inflammatory responses.


A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells.

  • Nagendra Kumar Kaushik‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

Non-thermal plasmas are emerging as a novel tool for the treatment of living tissues for biological and medical purpose. In this study, we described the effect of 4 min dielectric barrier discharge (DBD) plasma on both T98G cancer and HEK normal cell lines in the presence of different concentrations of osmolytes. This treatment strategy shows a specific inhibitory effect of a 240 s plasma exposure in the presence of osmolytes against T98G brain cancer cells only, but not on HEK normal cells. Based on these interesting properties of osmolytes, a non-thermal plasma appears to be a potential anticancer treatment strategy for different kinds of cancers in the presence of osmolytes.


PKMζ is essential for spinal plasticity underlying the maintenance of persistent pain.

  • Andre Laferrière‎ et al.
  • Molecular pain‎
  • 2011‎

Chronic pain occurs when normally protective acute pain becomes pathologically persistent. We examined here whether an isoform of protein kinase C (PKC), PKMζ, that underlies long-term memory storage in various brain regions, also sustains nociceptive plasticity in spinal cord dorsal horn (SCDH) mediating persistent pain.


Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors.

  • Morten Hentzer‎ et al.
  • The EMBO journal‎
  • 2003‎

Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of natural furanone compounds can act as a potent antagonist of bacterial quorum sensing. We employed GeneChip microarray technology to identify furanone target genes and to map the quorum sensing regulon. The transcriptome analysis showed that the furanone drug specifically targeted quorum sensing systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune response.


Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet.

  • Sooho Choi‎ et al.
  • Scientific reports‎
  • 2017‎

The variation in the biological function of proteins plays an important role in plasma medicine and sterilization. Several non-thermal plasma sources with different feeding gases are used worldwide for plasma treatment, including dielectric barrier discharge (DBD) and atmospheric-pressure plasma jet (APPJ) as the most commonly used sources. Therefore, in the present work, we used both DBD and APPJ plasma sources with N2 and air as feeding gases to evaluate the effects on the structural, thermodynamic, and activity changes of enzymes. In the current work, we used lysozyme as a model enzyme and verified the structural changes using circular dichroism (CD), fluorescence, and X-ray crystallography. In addition, we investigated the lysozyme thermodynamics using CD thermal analysis and changes in the B-factor from X-ray crystallography. The results showed that lysozyme activity decreased after the plasma treatment. From these analyses, we concluded that N2-feeding gas plasma disturbs the structure and activity of lysozyme more than Air feeding gas plasma in our experimental studies. This study provides novel fundamental information on the changes to enzymes upon plasma treatment, which has been absent from the literature until now.


Hydroxychloroquine versus Azithromycin for Hospitalized Patients with Suspected or Confirmed COVID-19 (HAHPS). Protocol for a Pragmatic, Open-Label, Active Comparator Trial.

  • Samuel M Brown‎ et al.
  • Annals of the American Thoracic Society‎
  • 2020‎

Coronavirus disease (COVID-19) is a potentially fatal illness with no proven therapy beyond excellent supportive care. Treatments are urgently sought. Adaptations to traditional trial logistics and design to allow rapid implementation, evaluation of trials within a global trials context, flexible interim monitoring, and access outside traditional research hospitals (even in settings where formal placebos are unavailable) may be helpful. Thoughtful adaptations to traditional trial designs, especially within the global context of related studies, may also foster collaborative relationships among government, community, and the research enterprise. Here, we describe the protocol for a pragmatic, active comparator trial in as many as 300 patients comparing two current "off-label" treatments for COVID-19-hydroxychloroquine and azithromycin-in academic and nonacademic hospitals in Utah. We developed the trial in response to local pressures for widespread, indiscriminate off-label use of these medications. We used a hybrid Bayesian-frequentist design for interim monitoring to allow rapid, contextual assessment of the available evidence. We also developed an inference grid for interpreting the range of possible results from this trial within the context of parallel trials and prepared for a network meta-analysis of the resulting data. This trial was prospectively registered (ClinicalTrials.gov Identifier: NCT04329832) before enrollment of the first patient.Clinical trial registered with www.clinicaltrials.gov (NCT04329832).


The Efficiency of Atmospheric Dielectric Barrier Discharge Plasma against Escherichia coli and Bacillus cereus on Dried Laver (Porphyra tenera).

  • Ji Yoon Kim‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

This study investigated the effects of atmospheric dielectric barrier discharge (DBD) plasma (1.1 kV, 43 kHz, 5-30 min, N2: 1.5 L/m) on the reduction of Escherichia coli and Bacillus cereus on dried laver. The reductions of E. coli and B. cereus by 5, 10, 20, and 30 min of DBD plasma were 0.56 and 0.24, 0.61 and 0.66, 0.76 and 1.24, and 1.02 and 1.38 log CFU/g, respectively. The D-value of E. coli and B. cereus was predicted as 29.80 and 20.53 min, respectively, using the Weibull model for E. coli (R2 = 0.95) and first-order kinetics for B. cereus (R2 = 0.94). After DBD plasma 5-30 min treatment, there was no change in pH (6.20-6.21) and this value was higher than the untreated dried laver (6.08). All sensory scores in DBD plasma-treated laver were determined as >6 points. The 30 min of DBD plasma is regarded as a novel intervention for the control of potential hazardous bacteria in dried laver.


Cold Atmospheric Plasma Restores Paclitaxel Sensitivity to Paclitaxel-Resistant Breast Cancer Cells by Reversing Expression of Resistance-Related Genes.

  • Sungbin Park‎ et al.
  • Cancers‎
  • 2019‎

Paclitaxel (Tx) is a widely used therapeutic chemical for breast cancer treatment; however, cancer recurrence remains an obstacle for improved prognosis of cancer patients. In this study, cold atmospheric plasma (CAP) was tested for its potential to overcome the drug resistance. After developing Tx-resistant MCF-7 (MCF-7/TxR) breast cancer cells, CAP was applied to the cells, and its effect on the recovery of drug sensitivity was assessed in both cellular and molecular aspects. Sensitivity to Tx in the MCF-7/TxR cells was restored up to 73% by CAP. A comparison of genome-wide expression profiles between the TxR cells and the CAP-treated cells identified 49 genes that commonly appeared with significant changes. Notably, 20 genes, such as KIF13B, GOLM1, and TLE4, showed opposite expression profiles. The protein expression levels of selected genes, DAGLA and CEACAM1, were recovered to those of their parental cells by CAP. Taken together, CAP inhibited the growth of MCF-7/TxR cancer cells and recovered Tx sensitivity by resetting the expression of multiple drug resistance-related genes. These findings may contribute to extending the application of CAP to the treatment of TxR cancer.


Comparison of Size of Pulmonary Artery and Its Branches on Transthoracic Echocardiography Versus Computed Tomographic Angiography in Patients with Tetralogy of Fallot.

  • Shah Nawaz Sathio‎ et al.
  • Cureus‎
  • 2020‎

Background Transthoracic echocardiography (TTE) plays a vital role in the assessment of the surgical management of patients with tetralogy of Fallot (TOF). Accurate assessment of the main pulmonary valve annulus, main pulmonary artery (MPA), and branch pulmonary arteries are crucial for decision-making regarding the surgical approach in the form of total correction. It is also important for performing a systemic-to-pulmonary artery shunt operation and affects the outcome. In some patients with poor echogenic windows, it is sometimes difficult to obtain accurate measurements. Cardiac computed tomographic angiography (CTA) can be a superior diagnostic modality. Therefore, the aim of this study was to evaluate the degree of agreement between TTE and CTA in assessing the main pulmonary valve annulus and the size of the MPA and its branches among patients with TOF patients. Methodology Patients above one year of age, with TOF, presented during the study period of six months - from January 1, 2019, to June 30, 2019, were included in the study. All the patients had TTE and cardiac CTA to assess the annulus and the size of the MPA and its branches (right pulmonary artery (RPA) and left pulmonary artery (LPA)). CTA measurement of all parameters was compared with TTE measurement of the same on three different views each by computing the Bland-Altman plot and Pearson correlation coefficients. Results A total of 73 TOF patients were included in this study. The correlation coefficients between CTA and TTE for the measurement of the annulus were 0.767 and 0.833 for the parasternal short-axis view and the subcostal view, respectively. The correlation coefficients between CTA and TTE for the measurement of MPA were 0.820 and 0.866 for the parasternal short-axis view and the suprasternal view, respectively. The correlation coefficients between CTA and TTE for the measurement of RPA were 0.883 and 0.897 for the parasternal short-axis view and the suprasternal view, respectively. Similarly, the correlation coefficients between CTA and TTE for the measurement of LPA were 0.848 and 0.877 for the parasternal short-axis view and the suprasternal view, respectively. Conclusion In conclusion, there is a strong correlation and agreement between cardiac CTA and TTE for the assessment of the annulus and the size of the pulmonary artery (PA) and its branches in patients with TOF.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: