Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Eupatilin ameliorates collagen induced arthritis.

  • Juryun Kim‎ et al.
  • Journal of Korean medical science‎
  • 2015‎

Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-α and then treated with eupatilin, and the levels of IL-6 and IL-1β mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-α treatment of synoviocytes increased the expression of IL-6 and IL-1β mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.


Sodium Chloride Aggravates Arthritis via Th17 Polarization.

  • Seung Min Jung‎ et al.
  • Yonsei medical journal‎
  • 2019‎

Sodium chloride (NaCl) has been proposed as a driving factor in autoimmune diseases through the induction of pathogenic CD4+ T helper cells that produce interleukin-17 (Th17 cells). This study investigated the effects of NaCl on inflammatory arthritis in mice and humans.


Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering.

  • Yeonsue Jang‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

Pluripotent stem cell transplantation is a promising regenerative strategy for treating intractable diseases. However, securing human leukocyte antigen (HLA)-matched donor stem cells is extremely difficult. The traditional approach for generating such cells is to establish homozygous pluripotent stem cell lines. Unfortunately, because of HLA diversity, this strategy is too time-consuming to be of practical use. HLA engineering of donor stem cells has been proposed recently as a means to evade graft-versus-host rejection in stem cell allotransplantation. This approach would be advantageous in both time and cost to the traditional method, but its feasibility must be investigated. In this study, we used CRISPR/Cas9 to knockout HLA-B from inducible pluripotent stem cells (iPSCs) with heterogenous HLA-B and showed that the HLA-B knockout iPSCs resulted in less immunogenicity in HLA-B antisera than that in the control. Our results support the feasibility of HLA-engineered iPSCs in stem cell allotransplantation.


Characterization of Early-Onset Finger Osteoarthritis-Like Condition Using Patient-Derived Induced Pluripotent Stem Cells.

  • Yeri Alice Rim‎ et al.
  • Cells‎
  • 2021‎

Early osteoarthritis (OA)-like symptoms are difficult to study owing to the lack of disease samples and animal models. In this study, we generated induced pluripotent stem cell (iPSC) lines from a patient with a radiographic early-onset finger osteoarthritis (efOA)-like condition in the distal interphalangeal joint and her healthy sibling. We differentiated those cells with similar genetic backgrounds into chondrogenic pellets (CPs) to confirm efOA. CPs generated from efOA-hiPSCs (efOA-CPs) showed lower levels of COL2A1, which is a key marker of hyaline cartilage after complete differentiation, for 21 days. Increase in pellet size and vacuole-like morphologies within the pellets were observed in the efOA-CPs. To analyze the changes occurred during the development of vacuole-like morphology and the increase in pellet size in efOA-CPs, we analyzed the expression of OA-related markers on day 7 of differentiation and showed an increase in the levels of COL1A1, RUNX2, VEGFA, and AQP1 in efOA-CPs. IL-6, MMP1, and MMP10 levels were also increased in the efOA-CPs. Taken together, we present proof-of-concept regarding disease modeling of a unique patient who showed OA-like symptoms.


One-STAGE Tip Method for TMT-Based Proteomic Analysis of a Minimal Amount of Cells.

  • Narae Park‎ et al.
  • ACS omega‎
  • 2023‎

Liquid chromatography-tandem mass spectrometry (LC-MS)-based profiling of proteomes with isobaric tag labeling from low-quantity biological and clinical samples, including needle-core biopsies and laser capture microdissection, has been challenging due to the limited amount and sample loss during preparation. To address this problem, we developed OnM (On-Column from Myers et al. and mPOP)-modified on-column method combining freeze-thaw lysis of mPOP with isobaric tag labeling of On-Column method to minimize sample loss. OnM is a method that processes the sample in one-STAGE tip from cell lysis to tandem mass tag (TMT) labeling without any transfer of the sample. In terms of protein coverage, cellular components, and TMT labeling efficiency, the modified On-Column (or OnM) displayed similar performance to the results from Myers et al. To evaluate the lower-limit processing capability of OnM, we utilized OnM for multiplexing and were able to quantify 301 proteins in a TMT 9-plex with 50 cells per channel. We optimized the method as low as 5 cells per channel in which we identified 51 quantifiable proteins. OnM method is a low-input proteomics method widely applicable and capable of identifying and quantifying proteomes from limited samples, with tools that are readily available in a majority of proteomic laboratories.


Mesenchymal Stem Cell Transplantation Ameliorates Ara-C-Induced Motor Deficits in a Mouse Model of Cerebellar Ataxia.

  • Narae Park‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

This study investigated the therapeutic effects of transplanting human mesenchymal stem cells (hMSCs) into wild-type mice that were intraperitoneally administered cytosine arabinoside (Ara-C) to develop cerebellar ataxia (CA) during the first three postnatal days. hMSCs were intrathecally injected into 10-week-old mice once or thrice at 4-week intervals. Compared to the nontreated mice, the hMSC-treated mice showed improved motor and balance coordination, as measured using the rotarod, open-field, and ataxic scoring assessments, and increased protein levels in Purkinje and cerebellar granule cells, as measured using calbindin and NeuN protein markers. Multiple hMSC injections preserved Ara-C-induced cerebellar neuronal loss and improved cerebellar weight. Furthermore, the hMSC implantation significantly elevated the levels of neurotrophic factors, including brain-derived and glial cell line-derived neurotrophic factors, and suppressed TNF-α-, IL-1β-, and iNOS-mediated proinflammatory responses. Collectively, our results demonstrate that hMSCs exhibit therapeutic potential for Ara-C-induced CA by protecting neurons through the stimulation of neurotrophic factors and inhibition of cerebellar inflammatory responses, which can improve motor behavior and alleviate ataxia-related neuropathology. In summary, this study suggests that hMSC administration, particularly multiple treatments, can effectively treat ataxia-related symptoms with cerebellar toxicity.


Intraperitoneal infusion of mesenchymal stem cell attenuates severity of collagen antibody induced arthritis.

  • Yoojun Nam‎ et al.
  • PloS one‎
  • 2018‎

It is unclear how systemic administration of mesenchymal stem cells (MSCs) controls local inflammation. The aim of this study was to evaluate the therapeutic effects of human MSCs on inflammatory arthritis and to identify the underlying mechanisms. Mice with collagen antibody-induced arthritis (CAIA) received two intraperitoneal injections of human bone marrow-derived MSCs. The clinical and histological features of injected CAIA were then compared with those of non-injected mice. The effect of MSCs on induction of regulatory T cells was examined both in vitro and in vivo. We also examined multiple cytokines secreted by peritoneal mononuclear cells, along with migration of MSCs in the presence of stromal cell-derived factor-1 alpha (SDF-1α) and/or regulated on activation, normal T cell expressed and secreted (RANTES). Sections of CAIA mouse joints and spleen were stained for human anti-nuclear antibodies (ANAs) to confirm migration of injected human MSCs. The results showed that MSCs alleviated the clinical and histological signs of synovitis in CAIA mice. Peritoneal lavage cells from mice treated with MSCs expressed higher levels of SDF-1α and RANTES than those from mice not treated with MSCs. MSC migration was more prevalent in the presence of SDF-1α and/or RANTES. MSCs induced CD4+ T cells to differentiate into regulatory T cells in vitro, and expression of FOXP3 mRNA was upregulated in the forepaws of MSC-treated CAIA mice. Synovial and splenic tissues from CAIA mice receiving human MSCs were positive for human ANA, suggesting recruitment of MSCs. Taken together, these results suggest that MSCs migrate into inflamed tissues and directly induce the differentiation of CD4+ T cells into regulatory T cells, which then suppress inflammation. Thus, systemic administration of MSCs may be a therapeutic option for rheumatoid arthritis.


Exacerbation of symptomatic arthritis by cigarette smoke in experimental arthritis.

  • Jaewoo Kang‎ et al.
  • PloS one‎
  • 2020‎

Epidemiologically, cigarette smoking is a well-known risk factor for the pathogenesis of rheumatoid arthritis (RA). However, there has been few plausible explanations why cigarette smoking aggravated RA. We investigated the causal effect of smoking in experimental model of arthritis development.


Increased Potential of Bone Formation with the Intravenous Injection of a Parathyroid Hormone-Related Protein Minicircle DNA Vector.

  • Jang-Woon Kim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Osteoporosis is commonly treated via the long-term usage of anti-osteoporotic agents; however, poor drug compliance and undesirable side effects limit their treatment efficacy. The parathyroid hormone-related protein (PTHrP) is essential for normal bone formation and remodeling; thus, may be used as an anti-osteoporotic agent. Here, we developed a platform for the delivery of a single peptide composed of two regions of the PTHrP protein (1-34 and 107-139); mcPTHrP 1-34+107-139 using a minicircle vector. We also transfected mcPTHrP 1-34+107-139 into human mesenchymal stem cells (MSCs) and generated Thru 1-34+107-139-producing engineered MSCs (eMSCs) as an alternative delivery system. Osteoporosis was induced in 12-week-old C57BL/6 female mice via ovariectomy. The ovariectomized (OVX) mice were then treated with the two systems; (1) mcPTHrP 1-34+107-139 was intravenously administered three times (once per week); (2) eMSCs were intraperitoneally administered twice (on weeks four and six). Compared with the control OVX mice, the mcPTHrP 1-34+107-139-treated group showed better trabecular bone structure quality, increased bone formation, and decreased bone resorption. Similar results were observed in the eMSCs-treated OVX mice. Altogether, these results provide experimental evidence to support the potential of delivering PTHrP 1-34+107-139 using the minicircle technology for the treatment of osteoporosis.


Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells.

  • Yeri Alice Rim‎ et al.
  • Stem cells international‎
  • 2018‎

Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs). Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n = 3), peripheral blood mononuclear cells (PBMC, n = 3), cord blood mononuclear cells (CBMC, n = 3), and osteoarthritis fibroblast-like synoviocytes (OAFLS, n = 3). Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop "cartilage in a dish" in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.


Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis.

  • Juryun Kim‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Metabolomics is the systemic study of the unique fingerprints of metabolites involved in cellular processes and biochemical reactions. The metabolomic approach is useful in diagnosing and predicting the development of rheumatoid arthritis (RA) and osteoarthritis (OA) and is emerging as a useful tool for identifying disease biomarkers. The aim of this study was to compare the metabolic blueprint of fibroblast-like synoviocyte (FLS) cells and induced pluripotent stem cells (iPSCs) derived from RA and OA patients.


Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum.

  • Narae Park‎ et al.
  • International journal of stem cells‎
  • 2022‎

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples.


Characterization of the Secretome of a Specific Cell Expressing Mutant Methionyl-tRNA Synthetase in Co-Culture Using Click Chemistry.

  • Sungho Shin‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Co-culture system, in which two or more distinct cell types are cultured together, is advantageous in that it can mimic the environment of the in vivo niche of the cells. In this study, we presented a strategy to analyze the secretome of a specific cell type under the co-culture condition in serum-supplemented media. For the cell-specific secretome analysis, we expressed the mouse mutant methionyl-tRNA synthetase for the incorporation of the non-canonical amino acid, azidonorleucine into the newly synthesized proteins in cells of which the secretome is targeted. The azidonorleucine-tagged secretome could be enriched, based on click chemistry, and distinguished from any other contaminating proteins, either from the cell culture media or the other cells co-cultured with the cells of interest. In order to have more reliable true-positive identifications of cell-specific secretory bodies, we established criteria to exclude any identified human peptide matched to bovine proteins. As a result, we identified a maximum of 719 secreted proteins in the secretome analysis under this co-culture condition. Last, we applied this platform to profile the secretome of mesenchymal stem cells and predicted its therapeutic potential on osteoarthritis based on secretome analysis.


Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling.

  • Yumi Kwon‎ et al.
  • Scientific reports‎
  • 2021‎

The role of matrix metalloproteinase-2 (MMP-2) in tumor cell migration has been widely studied, however, the characteristics and effects of MMP-2 in clinical sample of metastatic colorectal cancer (CRC) remain poorly understood. Here, in order to unveil the perturbed proteomic signal during MMP-2 induced cancer progression, we analyzed plasma proteome of CRC patients according to disease progression, HCT116 cancer secretome upon MMP-2 knockdown, and publicly available CRC tissue proteome data. Collectively, the integrative analysis of multi-layered proteomes revealed that a protein cluster containing EMT (Epithelial-to-Mesenchymal Transition)-associated proteins such as CD9-integrin as well as MMP-2. The proteins of the cluster were regulated by MMP-2 perturbation and exhibited significantly increased expressions in tissue and plasma as disease progressed from TNM (Tumor, Node, and Metastasis) stage I to II. Furthermore, we also identified a plausible association between MMP-2 up-regulation and activation of focal adhesion kinase signaling in the proteogenomic analysis of CRC patient tissues. Based on these comparative and integrative analyses, we suggest that the high invasiveness in the metastatic CRC resulted from increased secretion of MMP-2 and CD9-integrin complex mediated by FAK signaling activation.


Etanercept-Synthesising Mesenchymal Stem Cells Efficiently Ameliorate Collagen-Induced Arthritis.

  • Narae Park‎ et al.
  • Scientific reports‎
  • 2017‎

Mesenchymal stem cells (MSCs) have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and clinical treatments. These beneficial effects, however, are sometimes inconsistent and unpredictable. For wider and proper application, scientists sought to improve MSC functions by engineering. We aimed to invent a novel method to produce synthetic biological drugs from engineered MSCs. We investigated the anti-arthritic effect of engineered MSCs in a collagen-induced arthritis (CIA) model. Biologics such as etanercept are the most successful drugs used in anti-cytokine therapy. Biologics are made of protein components, and thus can be theoretically produced from cells including MSCs. MSCs were transfected with recombinant minicircles encoding etanercept (trade name, Enbrel), which is a tumour necrosis factor α blocker currently used to treat rheumatoid arthritis. We confirmed minicircle expression in MSCs in vitro based on GFP. Etanercept production was verified from the conditioned media. We confirmed that self-reproduced etanercept was biologically active in vitro. Arthritis subsided more efficiently in CIA mice injected with mcTNFR2MSCs than in those injected with conventional MSCs or etanercept only. Although this novel strategy is in a very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics and engineering MSCs.


A Dual Target-directed Agent against Interleukin-6 Receptor and Tumor Necrosis Factor α ameliorates experimental arthritis.

  • Youngkyun Kim‎ et al.
  • Scientific reports‎
  • 2016‎

A considerable proportion of patients with rheumatoid arthritis (RA) do not respond to monospecific agents. The purpose of our study was to generate a hybrid form of biologics, targeting tumor-necrosis factor alpha (TNFα) and interleukin-6 receptor (IL-6R), and determine its anti-arthritic properties in vitro and in vivo. A novel dual target-directed agent (DTA(A7/sTNFR2)) was generated by conjugating soluble TNF receptor 2 (sTNFR2) to the Fc region of A7, a new anti-IL-6R antibody obtained by screening the phage display human antibody library. DTA(A7/sTNFR2) inhibited the proliferation and migration of fibroblast-like synoviocytes from patients with RA (RA-FLS) more efficiently than single target-directed agents. DTA(A7/sTNFR2) also blocked osteoclastogenesis from bone marrow cells. The arthritis severity scores of the experimental arthritis mice with DTA(A7/sTNFR2) tended to be lower than those of mice with IgG, A7, or sTNFR2. Histological data suggested that DTA(A7/sTNFR2) is more efficient than single-target drugs in preventing joint destruction and bone loss. These results were confirmed in vivo using the minicircle system. Taken together, the results show that DTA(A7/sTNFR2) may be a promising therapeutic agent for the treatment of RA.


Human adipose-derived mesenchymal stem cells attenuate collagen antibody-induced autoimmune arthritis by inducing expression of FCGIIB receptors.

  • Hyoju Yi‎ et al.
  • BMC musculoskeletal disorders‎
  • 2015‎

Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) derived from adipose tissue. MSCs have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and human diseases. However, the mechanisms underlying this wide range of effects need to be explored.


Self in vivo production of a synthetic biological drug CTLA4Ig using a minicircle vector.

  • Yeri Alice Rim‎ et al.
  • Scientific reports‎
  • 2014‎

Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA4Ig, abatacept) is a B7/CD28 costimulation inhibitor that can ward off the immune response by preventing the activation of naïve T cells. This therapeutic agent is administered to patients with autoimmune diseases such as rheumatoid arthritis. Its antiarthritic efficacy is satisfactory, but the limitations are the necessity for frequent injection and high cost. Minicircles can robustly express the target molecule and excrete it outside the cell as an indirect method to produce the protein of interest in vivo. We inserted the sequence of abatacept into the minicircle vector, and by successful in vivo injection the host was able to produce the synthetic protein drug. Intravenous infusion of the minicircle induced spontaneous production of CTLA4Ig in mice with collagen-induced arthritis. Self-produced CTLA4Ig significantly decreased the symptoms of arthritis. Injection of minicircle CTLA4Ig regulated Foxp3(+) T cells and Th17 cells. Parental and mock vectors did not ameliorate arthritis or modify the T cell population. We have developed a new concept of spontaneous protein drug delivery using a minicircle vector. Self in vivo production of a synthetic protein drug may be useful when biological drugs cannot be injected because of manufacturing or practical problems.


Recapitulation of methotrexate hepatotoxicity with induced pluripotent stem cell-derived hepatocytes from patients with rheumatoid arthritis.

  • Juryun Kim‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis (RA). The drug is cost-effective, but sometimes causes hepatotoxicity, requiring a physician's attention. In this study, we simulated hepatotoxicity by treating hepatocytes derived from RA patient-derived induced pluripotent stem cells (RA-iPSCs) with MTX.


Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist.

  • Kijun Lee‎ et al.
  • PloS one‎
  • 2018‎

Human bone marrow-derived mesenchymal stem cells (MSCs) have been observed to inhibit arthritis in experimental animal models such as collagen-induced arthritis. However, the exact anti-inflammatory mechanisms remain poorly understood. Interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine produced by immune and stromal cells. We postulated that MSCs could produce IL-1Ra and attenuate experimental arthritis. In this study, 5x106 MSCs were injected into the peritoneal cavity of IL-1Ra knockout (IL-1RaKO) mice. MSCs reduced the severity of the arthritis by histology and decreased pro-inflammatory cytokine levels in IL-1RaKO mice. The ratio of splenic T helper 17 (Th17) cells to regulatory T cells (Treg) was significantly decreased in MSC-injected IL-1RaKO mice. Purified splenic CD4+ T cells from mice in each of the treatment groups were cultured under Th17 polarizing conditions and analyzed by flow cytometry. Less expansion of the Th17 population was observed in the MSC-treated group. Interestingly, MSCs expressed inducible IL-1Ra against inflammatory environmental stimuli. Human recombinant IL-1Ra could suppress Th17 cells differentiation under Th17 polarizing conditions. These results indicate that IL-1Ra expressed by MSCs can inhibit Th17 polarization and decrease the immune response in IL-1RaKO mice. Therefore, MSC-derived IL-1Ra may inhibit inflammation in IL-1RaKO mice via effects on Th17 differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: