Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Muscle-specific knock-out of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance.

  • Fumika Inazuka‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

NUAK1 is a member of the AMP-activated protein kinase-related kinase family. Recent studies have shown that NUAK1 is involved in cellular senescence and motility in epithelial cells and fibroblasts. However, the physiological roles of NUAK1 are poorly understood because of embryonic lethality in NUAK1 null mice. The purpose of this study was to elucidate the roles of NUAK1 in adult tissues. We determined the tissue distribution of NUAK1 and generated muscle-specific NUAK1 knock-out (MNUAK1KO) mice. For phenotypic analysis, whole body glucose homeostasis and muscle glucose metabolism were examined. Quantitative phosphoproteome analysis of soleus muscle was performed to understand the molecular mechanisms underlying the knock-out phenotype. Nuak1 mRNA was preferentially expressed in highly oxidative tissues such as brain, heart, and soleus muscle. On a high fat diet, MNUAK1KO mice had a lower fasting blood glucose level, greater glucose tolerance, higher insulin sensitivity, and higher concentration of muscle glycogen than control mice. Phosphoproteome analysis revealed that phosphorylation of IRS1 Ser-1097 was markedly decreased in NUAK1-deficient muscle. Consistent with this, insulin signaling was enhanced in the soleus muscle of MNUAK1KO mice, as evidenced by increased phosphorylation of IRS1 Tyr-608, AKT Thr-308, and TBC1D4 Thr-649. These observations suggest that a physiological role of NUAK1 is to suppress glucose uptake through negative regulation of insulin signaling in oxidative muscle.


Large-scale Discovery of Substrates of the Human Kinome.

  • Naoyuki Sugiyama‎ et al.
  • Scientific reports‎
  • 2019‎

Kinase networks are important for cellular signal transduction. Despite tremendous efforts to uncover these signaling pathways, huge numbers of uncharacterized phosphosites still remain in the human proteome. Because of the transient nature of kinase-substrate interactions in vivo, it is almost impossible to identify direct substrates. Here, we present a strategy for the rapid, accurate and high-throughput discovery of in vitro kinase substrates using quantitative proteomics. Using 385 purified kinases (354 wild-type protein kinases, 21 mutants and 10 lipid kinases), we identified a total of 175,574 potential direct kinase substrates. In addition, we identified novel kinase groups, such as one group containing 30 threonine-directed kinases and another containing 15 serine/threonine/tyrosine kinases. Surprisingly, we observed that the diversity of substrates for tyrosine kinases was much higher than that for serine-threonine kinases.


Integrative features of the yeast phosphoproteome and protein-protein interaction map.

  • Nozomu Yachie‎ et al.
  • PLoS computational biology‎
  • 2011‎

Following recent advances in high-throughput mass spectrometry (MS)-based proteomics, the numbers of identified phosphoproteins and their phosphosites have greatly increased in a wide variety of organisms. Although a critical role of phosphorylation is control of protein signaling, our understanding of the phosphoproteome remains limited. Here, we report unexpected, large-scale connections revealed between the phosphoproteome and protein interactome by integrative data-mining of yeast multi-omics data. First, new phosphoproteome data on yeast cells were obtained by MS-based proteomics and unified with publicly available yeast phosphoproteome data. This revealed that nearly 60% of ∼6,000 yeast genes encode phosphoproteins. We mapped these unified phosphoproteome data on a yeast protein-protein interaction (PPI) network with other yeast multi-omics datasets containing information about proteome abundance, proteome disorders, literature-derived signaling reactomes, and in vitro substratomes of kinases. In the phospho-PPI, phosphoproteins had more interacting partners than nonphosphoproteins, implying that a large fraction of intracellular protein interaction patterns (including those of protein complex formation) is affected by reversible and alternative phosphorylation reactions. Although highly abundant or unstructured proteins have a high chance of both interacting with other proteins and being phosphorylated within cells, the difference between the number counts of interacting partners of phosphoproteins and nonphosphoproteins was significant independently of protein abundance and disorder level. Moreover, analysis of the phospho-PPI and yeast signaling reactome data suggested that co-phosphorylation of interacting proteins by single kinases is common within cells. These multi-omics analyses illuminate how wide-ranging intracellular phosphorylation events and the diversity of physical protein interactions are largely affected by each other.


Motif-Targeting Phosphoproteome Analysis of Cancer Cells for Profiling Kinase Inhibitors.

  • Kosuke Ogata‎ et al.
  • Cancers‎
  • 2022‎

We present a motif-targeting phosphoproteome analysis workflow utilizing in vitro kinase reaction to enrich a subset of peptides with specific primary sequence motifs. Phosphopeptides are enriched and dephosphorylated with alkaline phosphatase, followed by in vitro kinase reaction to phosphorylate substrate peptides with specific primary-sequence motifs. These phosphopeptides are enriched again, TMT-labeled, dephosphorylated to enhance MS-detectability, and analyzed by LC/MS/MS. We applied this approach to inhibitor-treated cancer cells, and successfully profiled the inhibitory spectra of multiple kinase inhibitors. We anticipate this approach will be applicable to target specific subsets of the phosphoproteome using the wide variety of available recombinant protein kinases.


Identification of Endogenous Kinase Substrates by Proximity Labeling Combined with Kinase Perturbation and Phosphorylation Motifs.

  • Tomoya Niinae‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2021‎

Mass-spectrometry-based phosphoproteomics can identify more than 10,000 phosphorylated sites in a single experiment. But, despite the fact that enormous phosphosite information has been accumulated in public repositories, protein kinase-substrate relationships remain largely unknown. Here, we describe a method to identify endogenous substrates of kinases by using a combination of a proximity-dependent biotin identification method, called BioID, with two other independent methods, kinase-perturbed phosphoproteomics and phosphorylation motif matching. For proof of concept, this approach was applied to casein kinase 2 (CK2) and protein kinase A (PKA), and we identified 24 and 35 putative substrates, respectively. We also show that known cancer-associated missense mutations near phosphosites of substrates affect phosphorylation by CK2 or PKA and thus might alter downstream signaling in cancer cells bearing these mutations. This approach extends our ability to probe physiological kinase-substrate networks by providing new methodology for large-scale identification of endogenous substrates of kinases.


Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis.

  • Naoyuki Sugiyama‎ et al.
  • Molecular systems biology‎
  • 2008‎

Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high-confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine-specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho-residues in Arabidopsis is similar to that in humans, where over 90 tyrosine-specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.


LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression.

  • Tatsuyuki Chiyoda‎ et al.
  • The Journal of cell biology‎
  • 2012‎

In the mitotic exit network of budding yeast, Dbf2 kinase phosphorylates and regulates Cdc14 phosphatase. In contrast, no phosphatase substrates of LATS1/WARTS kinase, the mammalian equivalent of Dbf2, has been reported. To address this discrepancy, we performed phosphoproteomic screening using LATS1 kinase. Screening identified MYPT1 (myosin phosphatase-targeting subunit 1) as a new substrate for LATS1. LATS1 directly and preferentially phosphorylated serine 445 (S445) of MYPT1. An MYPT1 mutant (S445A) failed to dephosphorylate Thr 210 of PLK1 (pololike kinase 1), thereby activating PLK1. This suggests that LATS1 promotes MYPT1 to antagonize PLK1 activity. Consistent with this, LATS1-depleted HeLa cells or fibroblasts from LATS1 knockout mice showed increased PLK1 activity. We also found deoxyribonucleic acid (DNA) damage-induced LATS1 activation caused PLK1 suppression via the phosphorylation of MYPT1 S445. Furthermore, LATS1 knockdown cells showed reduced G2 checkpoint arrest after DNA damage. These results indicate that LATS1 phosphorylates a phosphatase as does the yeast Dbf2 and demonstrate a novel role of LATS1 in controlling PLK1 at the G2 DNA damage checkpoint.


Motif-centric phosphoproteomics to target kinase-mediated signaling pathways.

  • Chia-Feng Tsai‎ et al.
  • Cell reports methods‎
  • 2022‎

Identifying cellular phosphorylation pathways based on kinase-substrate relationships is a critical step to understanding the regulation of physiological functions in cells. Mass spectrometry-based phosphoproteomics workflows have made it possible to comprehensively collect information on individual phosphorylation sites in a variety of samples. However, there is still no generic approach to uncover phosphorylation networks based on kinase-substrate relationships in rare cell populations. Here, we describe a motif-centric phosphoproteomics approach combined with multiplexed isobaric labeling, in which in vitro kinase reactions are used to generate targeted phosphopeptides, which are spiked into one of the isobaric channels to increase detectability. Proof-of-concept experiments demonstrate selective and comprehensive quantification of targeted phosphopeptides by using multiple kinases for motif-centric channels. More than 7,000 tyrosine phosphorylation sites were quantified from several tens of micrograms of starting materials. This approach enables the quantification of multiple phosphorylation pathways under physiological or pathological regulation in a motif-centric manner.


Porphyromonas gingivalis induces entero-hepatic metabolic derangements with alteration of gut microbiota in a type 2 diabetes mouse model.

  • Yoichiro Kashiwagi‎ et al.
  • Scientific reports‎
  • 2021‎

Periodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase.

  • Saashia Fuji‎ et al.
  • Nature communications‎
  • 2024‎

Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.


Blue light and CO2 signals converge to regulate light-induced stomatal opening.

  • Asami Hiyama‎ et al.
  • Nature communications‎
  • 2017‎

Stomata regulate gas exchange between plants and atmosphere by integrating opening and closing signals. Stomata open in response to low CO2 concentrations to maximize photosynthesis in the light; however, the mechanisms that coordinate photosynthesis and stomatal conductance have yet to be identified. Here we identify and characterize CBC1/2 (CONVERGENCE OF BLUE LIGHT (BL) AND CO2 1/2), two kinases that link BL, a major component of photosynthetically active radiation (PAR), and the signals from low concentrations of CO2 in guard cells. CBC1/CBC2 redundantly stimulate stomatal opening by inhibition of S-type anion channels in response to both BL and low concentrations of CO2. CBC1/CBC2 function in the signaling pathways of phototropins and HT1 (HIGH LEAF TEMPERATURE 1). CBC1/CBC2 interact with and are phosphorylated by HT1. We propose that CBCs regulate stomatal aperture by integrating signals from BL and CO2 and act as the convergence site for signals from BL and low CO2.


LATS1 and LATS2 phosphorylate CDC26 to modulate assembly of the tetratricopeptide repeat subcomplex of APC/C.

  • Kenta Masuda‎ et al.
  • PloS one‎
  • 2015‎

In budding yeast, the Mitotic Exit Network (MEN) regulates anaphase promoting complex/cyclosome (APC/C) via the Dbf2-Cdc14 signaling cascade. Dbf2 kinase phosphorylates and activates Cdc14 phosphatase, which removes the inhibitory phosphorylation of the APC/C cofactor Cdh1. Although each component of the MEN was highly conserved during evolution, there is presently no evidence supporting direct phosphorylation of CDC14 by large tumor suppressor kinase 1 (LATS1), the human counterpart of Dbf2; hence, it is unclear how LATS1 regulates APC/C. Here, we demonstrate that LATS1 phosphorylates the Thr7 (T7) residue of the APC/C component CDC26 directly. Nocodazole-induced phosphorylation of T7 was reduced by knockdown of LATS1 and LATS2 in HeLa cells, indicating that both of these kinases contribute to the phosphorylation of CDC26 in vivo. The T7 residue of CDC26 is critical for its interaction with APC6, a tetratricopeptide repeat-containing subunit of APC/C, and mutation of this residue to Asp (T7D) reduced the interaction of CDC26 with APC6. Replacement of endogenous CDC26 in HeLa cells with exogenous phosphor-mimic T7D-mutated CDC26 increased the elution size of APC/C subunits in a gel filtration assay, implying a change in the APC/C assembly upon phosphorylation of CDC26. Furthermore, T7D-mutated CDC26 promoted the ubiquitination of polo-like kinase 1, a well-known substrate of APC/C. Overall, these results suggest that LATS1/2 are novel kinases involved in APC/C phosphorylation and indicate a direct regulatory link between LATS1/2 and APC/C.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: