Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Expression of the tachykinin receptor mRNAs in healthy human colon.

  • Nadia Jaafari‎ et al.
  • European journal of pharmacology‎
  • 2008‎

Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.


Homeostatic synaptic scaling is regulated by protein SUMOylation.

  • Tim J Craig‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.


The small GTPase Arf1 modulates Arp2/3-mediated actin polymerization via PICK1 to regulate synaptic plasticity.

  • Daniel L Rocca‎ et al.
  • Neuron‎
  • 2013‎

Inhibition of Arp2/3-mediated actin polymerization by PICK1 is a central mechanism to AMPA receptor (AMPAR) internalization and long-term depression (LTD), although the signaling pathways that modulate this process in response to NMDA receptor (NMDAR) activation are unknown. Here, we define a function for the GTPase Arf1 in this process. We show that Arf1-GTP binds PICK1 to limit PICK1-mediated inhibition of Arp2/3 activity. Expression of mutant Arf1 that does not bind PICK1 leads to reduced surface levels of GluA2-containing AMPARs and smaller spines in hippocampal neurons, which occludes subsequent NMDA-induced AMPAR internalization and spine shrinkage. In organotypic slices, NMDAR-dependent LTD of AMPAR excitatory postsynaptic currents is abolished in neurons expressing mutant Arf1. Furthermore, NMDAR stimulation downregulates Arf1 activation and binding to PICK1 via the Arf-GAP GIT1. This study defines Arf1 as a critical regulator of actin dynamics and synaptic function via modulation of PICK1.


SUMOylation is required for glycine-induced increases in AMPA receptor surface expression (ChemLTP) in hippocampal neurons.

  • Nadia Jaafari‎ et al.
  • PloS one‎
  • 2013‎

Multiple pathways participate in the AMPA receptor trafficking that underlies long-term potentiation (LTP) of synaptic transmission. Here we demonstrate that protein SUMOylation is required for insertion of the GluA1 AMPAR subunit following transient glycine-evoked increase in AMPA receptor surface expression (ChemLTP) in dispersed neuronal cultures. ChemLTP increases co-localisation of SUMO-1 and the SUMO conjugating enzyme Ubc9 and with PSD95 consistent with the recruitment of SUMOylated proteins to dendritic spines. In addition, we show that ChemLTP increases dendritic levels of SUMO-1 and Ubc9 mRNA. Consistent with activity dependent translocation of these mRNAs to sites near synapses, levels of the mRNA binding and dendritic transport protein CPEB are also increased by ChemLTP. Importantly, reducing the extent of substrate protein SUMOylation by overexpressing the deSUMOylating enzyme SENP-1 or inhibiting SUMOylation by expressing dominant negative Ubc9 prevent the ChemLTP-induced increase in both AMPAR surface expression and dendritic SUMO-1 mRNA. Taken together these data demonstrate that SUMOylation of synaptic protein(s) involved in AMPA receptor trafficking is necessary for activity-dependent increases in AMPAR surface expression.


Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones.

  • Helena Cimarosti‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2012‎

Here, we show that oxygen and glucose deprivation (OGD) causes increased small ubiquitin-like modifier (SUMO)-1 and SUMO-2/3 conjugation to substrate proteins in cultured hippocampal neurones. Surprisingly, the SUMO protease SENP-1, which removes SUMO from conjugated proteins, was also increased by OGD, suggesting that the neuronal response to OGD involves a complex interplay between SUMOylation and deSUMOylation. Importantly, decreasing global SUMOylation in cultured hippocampal neurones by overexpression of the catalytic domain of SENP-1 increased neuronal vulnerability to OGD-induced cell death. Taken together, these results suggest a neuroprotective role for neuronal SUMOylation after OGD.


Cortactin regulates endo-lysosomal sorting of AMPARs via direct interaction with GluA2 subunit.

  • Gabrielle T Parkinson‎ et al.
  • Scientific reports‎
  • 2018‎

AMPA receptor (AMPAR) trafficking is a key determinant of synaptic strength and synaptic plasticity. Under basal conditions, constitutive trafficking maintains surface AMPARs by internalization into the endosomal system, where the majority are sorted and targeted for recycling back to the plasma membrane. NMDA receptor (NMDAR)-dependent Long-Term Depression (LTD) is characterised by a reduction in synaptic strength, and involves endosomal sorting of AMPARs away from recycling pathways to lysosomes. The mechanisms that determine whether AMPARs are trafficked to lysosomes or to recycling endosomes, especially in response to NMDAR stimulation, are unclear. Here, we define a role for the actin-regulatory protein cortactin as a mediator of AMPAR endosomal sorting by direct interaction with the GluA2 subunit. Disrupting GluA2-cortactin binding in neurons causes the targeting of GluA2/A3-containing receptors to lysosomes and their consequent degradation, resulting in a loss of surface and synaptic GluA2 under basal conditions and an occlusion of subsequent LTD expression. Furthermore, we show that NMDAR stimulation causes a dissociation of endogenous cortactin from GluA2 via tyrosine phosphorylation of cortactin. These results demonstrate that cortactin maintains GluA2/A3 levels by directing receptors away from lysosomes, and that disrupting GluA2-cortactin interactions to target GluA2/A3 to lysosomes is an essential component of LTD expression.


PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity.

  • Yasuko Nakamura‎ et al.
  • The EMBO journal‎
  • 2011‎

Activity-dependent remodelling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the precise molecular mechanisms that regulate this process are unclear. Activators of Arp2/3-mediated actin polymerisation are required for spine enlargement; however, during long-term depression (LTD), spines shrink via actin depolymerisation and Arp2/3 inhibitors in this process have not yet been identified. Here, we show that PICK1 regulates spine size in hippocampal neurons via inhibition of the Arp2/3 complex. PICK1 knockdown increases spine size, whereas PICK1 overexpression reduces spine size. NMDA receptor activation results in spine shrinkage, which is blocked by PICK1 knockdown or overexpression of a PICK1 mutant that cannot bind Arp2/3. Furthermore, we show that PICK1-Arp2/3 interactions are required for functional hippocampal LTD. This work demonstrates that PICK1 is a novel regulator of spine dynamics. Via Arp2/3 inhibition, PICK1 has complementary yet distinct roles during LTD to regulate AMPA receptor trafficking and spine size, and therefore functions as a crucial factor in both structural and functional plasticity.


PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking.

  • Nadia Jaafari‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2012‎

The number and subunit composition of postsynaptic AMPA receptors (AMPARs) is a key determinant of synaptic transmission. The vast majority of AMPARs contain GluA2 subunit, which renders the channel impermeable to calcium. However, a small proportion are GluA2 lacking and therefore calcium permeable (CP-AMPARs). It has been proposed recently that long-term potentiation (LTP) involves not only an increase in the total number of AMPARs at the synapse but also a transient switch to CP-AMPARs in the first few minutes after LTP induction. The molecular mechanisms that underlie this switch to CP-AMPARs and the subsequent switch back to calcium-impermeable AMPARs are unknown. Here, we show that endogenous GluA1 is rapidly inserted at the synaptic plasma membrane of rat hippocampal neurons immediately after stimulation with elevated glycine, a treatment known to induce LTP. In contrast, GluA2 is restricted from trafficking to the cell surface by a glycine-induced increase in PICK1-GluA2 binding on endosomal compartments. Between 5 and 20 min after stimulus, activation of CP-AMPARs triggers a release of GluA2 from PICK1, allowing GluA2-containing AMPARs to traffic to the synaptic plasma membrane. These results define a PICK1-dependent mechanism that underlies transient alterations in the subunit composition and calcium permeability of synaptic AMPARs that is important during the early phase after stimulation with glycine and therefore is likely to be important during the expression of LTP.


Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

  • Nadia Jaafari‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility.


Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling.

  • Sriharsha Kantamneni‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: