2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

TAK-925, an orexin 2 receptor-selective agonist, shows robust wake-promoting effects in mice.

  • Hiroshi Yukitake‎ et al.
  • Pharmacology, biochemistry, and behavior‎
  • 2019‎

Orexin-producing neurons in the lateral hypothalamus are a critical regulator of sleep/wake states, and their loss is associated with narcolepsy type 1 (NT1). Orexin peptides act on two G protein-coupled receptors: orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX2R knockout (KO) mice, but not OX1R KO mice, showed clear narcolepsy-like phenotypes, including fragmented sleep-wake cycles. Moreover, OX2R-selective antagonists have been shown to induce sleepiness in mice, and activation of OX2R has been reported to increase wakefulness. In this study, we characterized in vitro and in vivo profiles of a novel, highly selective OX2R agonist, TAK-925 [methyl (2R,3S)-3-[(methylsulfonyl)amino]-2-{[(cis-4-phenylcyclohexyl)oxy]methyl}piperidine-1-carboxylate]. TAK-925 activated human recombinant OX2R with 50% effective concentration value of 5.5 nM, and showed >5,000-fold selectivity over OX1R in calcium mobilization assays. TAK-925 induced OX2R-downstream signals similar to those displayed by orexin peptides in Chinese hamster ovary cells stably expressing human OX2R. In an electrophysiological study, TAK-925 activated physiological OX2R on histaminergic neurons in the mouse tuberomammillary nucleus (TMN). Subcutaneous (SC) administration of TAK-925 also modulated neuronal activity in various brain regions, including TMN, as measured by an immunohistochemical analysis using an anti-c-fos antibody. TAK-925 (SC) increased wakefulness in wild-type mice, but not in OX2R KO mice, during their sleep phase, demonstrating that a highly selective OX2R agonist can increase wakefulness in mice via OX2R activation. TAK-925 may have therapeutic potential to reduce hypersomnia in multiple disorders including NT1.


Strictly regulated agonist-dependent activation of AMPA-R is the key characteristic of TAK-653 for robust synaptic responses and cognitive improvement.

  • Atsushi Suzuki‎ et al.
  • Scientific reports‎
  • 2021‎

Agonistic profiles of AMPA receptor (AMPA-R) potentiators may be associated with seizure risk and bell-shaped dose-response effects. Here, we report the pharmacological characteristics of a novel AMPA-R potentiator, TAK-653, which exhibits minimal agonistic properties. TAK-653 bound to the ligand binding domain of recombinant AMPA-R in a glutamate-dependent manner. TAK-653 strictly potentiated a glutamate-induced Ca2+ influx in hGluA1i-expressing CHO cells through structural interference at Ser743 in GluA1. In primary neurons, TAK-653 augmented AMPA-induced Ca2+ influx and AMPA-elicited currents via physiological AMPA-R with little agonistic effects. Interestingly, TAK-653 enhanced electrically evoked AMPA-R-mediated EPSPs more potently than AMPA (agonist) or LY451646 (AMPA-R potentiator with a prominent agonistic effect) in brain slices. Moreover, TAK-653 improved cognition for both working memory and recognition memory, while LY451646 did so only for recognition memory, and AMPA did not improve either. These data suggest that the facilitation of phasic AMPA-R activation by physiologically-released glutamate is the key to enhancing synaptic and cognitive functions, and nonselective activation of resting AMPA-Rs may negatively affect this process. Importantly, TAK-653 had a wide safety margin against convulsion; TAK-653 showed a 419-fold (plasma Cmax) and 1017-fold (AUC plasma) margin in rats. These findings provide insight into a therapeutically important aspect of AMPA-R potentiation.


Particle beam therapy versus photon radiotherapy for extrahepatic biliary cancer-systemic review and meta-analysis.

  • Hideya Yamazaki‎ et al.
  • Journal of radiation research‎
  • 2023‎

Particle beam therapy (PT) is a potentially promising approach to the treatment of extrahepatic biliary cancer (EBC) because of its unique dose distribution using the Bragg peak. However, the superiority of PT to photon radiotherapy (XT) remains unclear. Therefore, we conducted a systematic review and meta-analysis to compare PT and XT for the treatment of EBC. The primary endpoint was overall survival (OS), which was pooled using a random-effects model. Nine articles comprising a total of 1558 patients (seven XT articles, n = 1488 patients; two PT articles, n = 70 patients) were screened. In addition, we compared the outcomes of XT and PT with the outcomes available from a prospective data registry (proton-net). The 1-year OS probability rates were 55, 65 and 72% for the XT group, PT group and PT registry, respectively. The 2-year OS probability rates were 26, 38 and 38% for the XT group, PT group and PT registry, respectively. The 3-year OS probability rates were 12, 35 and 18% for the XT group, PT group and PT registry, respectively. Although the difference between the 1-year OS rates of the XT group and PT registry was statistically significant, no other significant superiority was observed among these groups. In conclusion, the efficacy of PT was not superior to that of XT during this meta-analysis.


Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.

  • Noriko Suzuki‎ et al.
  • PloS one‎
  • 2012‎

Cannabinoid (CB) receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1) and CB(2) receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1) and CB(2) receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO) in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1) receptor activation to the cerebroprotective effects of TAK-937.


Successful treatment with proton beam therapy for a solitary sternal metastasis of breast cancer: a case report.

  • Yojiro Ishikawa‎ et al.
  • Journal of medical case reports‎
  • 2022‎

Breast cancer infrequently metastasizes to the sternum as solitary metastasis. We experienced successful treatment with proton beam therapy for a case of sternal metastasis of breast cancer. This case demonstrates for the first time the role of proton therapy in the treatment of oligometastatic sternal metastasis with limited tolerance of normal tissue due to previous photon irradiation.


Preclinical characterization of AMPA receptor potentiator TAK-137 as a therapeutic drug for schizophrenia.

  • Maiko Tanaka‎ et al.
  • Pharmacology research & perspectives‎
  • 2019‎

The downregulation of the glutamate system may be involved in positive, negative, and cognitive symptoms of schizophrenia. Through enhanced glutamate signaling, the activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor, an ionotropic glutamate receptor, could be a new therapeutic strategy for schizophrenia. TAK-137 is a novel AMPA receptor potentiator with minimal agonistic activity; in this study, we used rodents and nonhuman primates to assess its potential as a drug for schizophrenia. At 10 mg kg-1 p.o., TAK-137 partially inhibited methamphetamine-induced hyperlocomotion in rats, and at 3, 10, and 30 mg kg-1 p.o., TAK-137 partially inhibited MK-801-induced hyperlocomotion in mice, suggesting weak effects on the positive symptoms of schizophrenia. At 0.1 and 0.3 mg kg-1 p.o., TAK-137 significantly ameliorated MK-801-induced deficits in the social interaction of rats, demonstrating potential improvement of impaired social functioning, which is a negative symptom of schizophrenia. The effects of TAK-137 were evaluated on multiple cognitive domains-attention, working memory, and cognitive flexibility. TAK-137 enhanced attention in the five-choice serial reaction time task in rats at 0.2 mg kg-1 p.o., and improved working memory both in rats and monkeys: 0.2 and 0.6 mg kg-1 p.o. ameliorated MK-801-induced deficits in the radial arm maze test in rats, and 0.1 mg kg-1 p.o. improved the performance of ketamine-treated monkeys in the delayed matching-to-sample task. At 0.1 and 1 mg kg-1 p.o., TAK-137 improved the cognitive flexibility of subchronic phencyclidine-treated rats in the reversal learning test. Thus, TAK-137-type AMPA receptor potentiators with low intrinsic activity may offer new therapies for schizophrenia.


In Vivo Pharmacological Comparison of TAK-071, a Positive Allosteric Modulator of Muscarinic M1 Receptor, and Xanomeline, an Agonist of Muscarinic M1/M4 Receptor, in Rodents.

  • Takao Mandai‎ et al.
  • Neuroscience‎
  • 2019‎

Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive function and exert antipsychotic effects in patients with AD and schizophrenia. However, its clinical development was discontinued because of its cholinomimetic side effects. We compared in vivo pharmacological profiles of a novel M1R-selective positive allosteric modulator, TAK-071, and xanomeline in rodents. Xanomeline suppressed both methamphetamine- and MK-801-induced hyperlocomotion in mice, whereas TAK-071 suppressed only MK-801-induced hyperlocomotion. In a previous study, we showed that TAK-071 improved scopolamine-induced cognitive deficits in a rat novel object recognition task (NORT) with 33-fold margins versus cholinergic side effects (diarrhea). Xanomeline also improved scopolamine-induced cognitive impairments in a NORT; however, it had no margin versus cholinergic side effects (e.g., diarrhea, salivation, and hypoactivity) in rats. These side effects were observed even in M1R knockout mice. Evaluation of c-Fos expression as a marker of neural activation revealed that xanomeline increased the number of c-Fos-positive cells in several cortical areas, the hippocampal formation, amygdala, and nucleus accumbens. Other than in the orbital cortex and claustrum, TAK-071 induced similar c-Fos expression patterns. When donepezil was co-administered to increase the levels of acetylcholine, the number of TAK-071-induced c-Fos-positive cells in these brain regions was increased. TAK-071, through induction of similar neural activation as that seen with xanomeline, may produce procognitive and antipsychotic effects with improved cholinergic side effects.


Transgenic mice overexpressing miR-137 in the brain show schizophrenia-associated behavioral deficits and transcriptome profiles.

  • Yuuichi Arakawa‎ et al.
  • PloS one‎
  • 2019‎

Schizophrenia is a psychiatric disorder characterized by positive and negative symptoms and cognitive deficits. The exact cause of schizophrenia is still unknown, but substantial evidence indicates that it has a genetic component. Genome wide association studies demonstrate variants within miR-137 host gene are a risk factor for schizophrenia. However, the direct relationship between the pathophysiology of schizophrenia and the dosage of miR-137 remains unclear. Therefore, in this study, we generated transgenic mice overexpressing miR-137 (miR-137 Tg mice) with the neuron-specific Thy-1 promoter and examined schizophrenia-related phenotypes in these mice. Overexpression of miR-137 was observed in various brain regions of the miR-137 Tg mice, with down-regulation of putative miR-137 targets. MiR-137 Tg mice showed sensory gating deficits in a prepulse inhibition test, social deficits in a sociability and social novelty test, and cognitive deficits in a novel object recognition test. Interestingly, the predicted-altered pathways of the medial prefrontal cortex of miR-137 Tg mice were partially overlapped with those of the dorsolateral prefrontal cortex in postmortem brain of patients who died in equal to or less than 4 years after initial diagnosis of schizophrenia in published data. These results suggest that overexpression of miR-137 in the whole brain induces the several phenotypes that are relevant to aspects of psychiatric disorders, such as schizophrenia. Based on these findings, miR-137 Tg mice may have the potential to become a useful tool in researching the pathophysiology of psychiatric disorders.


Effectiveness of proton beam therapy for liver oligometastatic recurrence in patients with postoperative esophagus cancer.

  • Hisashi Yamaguchi‎ et al.
  • Journal of radiation research‎
  • 2023‎

There are several reports of hepatic resection for postoperative hepatic metastatic recurrence of esophageal cancer. However, it is unclear whether surgery is the best local treatment for liver metastases. Thus, this study aimed to retrospectively analyze proton beam therapy (PBT) for postoperative liver metastatic recurrence of esophageal cancer without extrahepatic lesions and examine outcomes and adverse events. This single-center historical cohort study selected patients who underwent PBT at our proton therapy center between 2012 and 2018. The patients were selected based on the following criteria: primary esophagus carcinoma was resection and metachronous liver oligometastasis recurrence without extrahepatic tumors and no more than three liver metastases. This study included seven males with a median age of 66 (range, 58-78) years, and 15 lesions were included in the study. The median tumor size was 22.6 (7-55.3) mm. The most frequent dose was 72.6 Gy relative biological effect (RBE)/22 fractions (fr) for four lesions and 64 Gy (RBE)/8 fr for four lesions. The median survival time was 35.5 (13.2-119.4) months. The 1-, 2- and 3-year overall survival (OS) rates were 100%, 57.1% and 42.9%, respectively. The median progression-free survival (PFS) time was 8.7 (1.2-44.1) months. The 1-, 2- and 3-year PFS rates were 28.6%. The 1-, 2- and 3-year local control (LC) rates were 100%. No grade ≥4 radiation-induced adverse events (AEs) were observed. We conclude that PBT can be considered an alternative to hepatic resection for recurrent liver metastases postoperative esophageal cancer.


Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients.

  • Rebecca Evans‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Narcolepsy type 1 (NT1) is a sleep disorder caused by a loss of orexinergic neurons. Narcolepsy type 2 (NT2) is heterogeneous; affected individuals typically have normal orexin levels. Following evaluation in mice, the effects of the orexin 2 receptor (OX2R)-selective agonist danavorexton were evaluated in single- and multiple-rising-dose studies in healthy adults, and in individuals with NT1 and NT2. In orexin/ataxin-3 narcolepsy mice, danavorexton reduced sleep/wakefulness fragmentation and cataplexy-like episodes during the active phase. In humans, danavorexton administered intravenously was well tolerated and was associated with marked improvements in sleep latency in both NT1 and NT2. In individuals with NT1, danavorexton dose-dependently increased sleep latency in the Maintenance of Wakefulness Test, up to the ceiling effect of 40 min, in both the single- and multiple-rising-dose studies. These findings indicate that OX2Rs remain functional despite long-term orexin loss in NT1. OX2R-selective agonists are a promising treatment for both NT1 and NT2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: