Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Processing of human toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes.

  • Madeleine M Hipp‎ et al.
  • Immunity‎
  • 2013‎

Toll-like receptor 7 (TLR7) triggers antiviral immune responses by recognizing viral single-stranded RNA in endosomes, but the biosynthetic pathway of human TLR7 (hTLR7) remains unclear. Here, we show that hTLR7 is proteolytically processed and that the C-terminal fragment selectively accumulates in endocytic compartments. hTLR7 processing occurred at neutral pH and was dependent on furin-like proprotein convertases (PCs). Furthermore, TLR7 processing was required for its functional response to TLR7 agonists such as R837 or influenza virus. Notably, proinflammatory and differentiation stimuli increased the expression of furin-like PCs in immune cells, suggesting a positive feedback mechanism for TLR7 processing during infection. Because self-RNA can under certain conditions activate TLR7 and trigger autoimmunity, our results identify furin-like PCs as a possible target to attenuate TLR7-dependent autoimmunity and other immune pathologies.


Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution.

  • Andrew T Ludlow‎ et al.
  • Nucleic acids research‎
  • 2014‎

The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase.


Tyrosine dephosphorylation is required for Bak activation in apoptosis.

  • Joanna L Fox‎ et al.
  • The EMBO journal‎
  • 2010‎

Activation of the cell-death mediator Bak commits a cell to mitochondrial apoptosis. The initial steps that govern Bak activation are poorly understood. To further clarify these pivotal events, we have investigated whether post-translational modifications of Bak impinge on its activation potential. In this study, we report that on apoptotic stimulation Bak undergoes dephosphorylation at tyrosine residue 108 (Y108), a critical event that is necessary but not sufficient for Bak activation, but is required both for early exposure of the occluded N-terminal domain and multimerisation. RNA interference (RNAi) screening identified non-receptor tyrosine phosphatases (PTPNs) required for Bak dephosphorylation and apoptotic induction through chemotherapeutic agents. Specifically, modulation of PTPN5 protein expression by siRNA and overexpression directly affected both Bak-Y108 phosphorylation and the initiation of Bak activation. We further show that MEK/ERK signalling directly affects Bak phosphorylation through inhibition of PTPN5 to promote cell survival. We propose a model of Bak activation in which the regulation of Bak dephosphorylation constitutes the initial step in the activation process, which reveals a previously unsuspected mechanism controlling the initiation of mitochondrial apoptosis.


An atlas of the catalytically active liver and spleen kinases in chicken identified by chemoproteomics.

  • Bindu Nanduri‎ et al.
  • Journal of proteomics‎
  • 2020‎

Phosphorylation is a post-translational protein modification regulating most known cellular processes. While protein kinases constitute a large family of highly conserved enzymes, identification of active kinases is challenging due to a low abundance of some of these signaling molecules. Although chicken is the first agricultural animal to have a sequenced genome, annotation of the kinome, i.e., a complement of all protein kinases in the genome is limited. We used chemical probes consisting of ATP and ADP derivatives binding to specific lysine (Lys) residues within the ATP-binding pocket of kinases, combined with proteomics, to identify 267 peptides labeled with the ATP and ADP acyl derivatives and 188 corresponding chicken kinases in chicken spleen and liver. Our description of active chicken kinases and ATP binding sites will support future studies focused on identifying the role of this important class of enzymes in chicken health and disease. SIGNIFICANCE: Advances made in understanding chicken enzymes are critical for the improved knowledge of the regulatory pathways controlling physiological processes in chicken. Since protein phosphorylation controls multiple aspects of cell fate, it is often linked to pathological conditions, and understanding of the kinase expression in chicken is essential for future therapeutic approaches. We coupled proteomics and labeling with active-site probes binding to Lys residues within the ATP-binding pocket of kinases to identify 188 kinases and corresponding 267 peptides labeled with the ATP and ADP acyl derivatives in chicken spleen and liver. Results of the present study describing catalytically active kinases is a starting point for chemoproteomic-based interrogation of kinases in chicken exposed to different conditions. Kinases identified in this study are available through the Chickspress genome browser that has previously published mRNA, miRNA, and shotgun proteomics data.


Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay.

  • Chao Lei‎ et al.
  • iScience‎
  • 2021‎

Diet and bile play critical roles in shaping gut microbiota, but the molecular mechanism underlying interplay with intestinal microbiota is unclear. Here, we showed that lemon-derived exosome-like nanoparticles (LELNs) enhance lactobacilli toleration to bile. To decipher the mechanism, we used Lactobacillus rhamnosus GG (LGG) as proof of concept to show that LELNs enhance LGG bile resistance via limiting production of Msp1 and Msp3, resulting in decrease of bile accessibility to cell membrane. Furthermore, we found that decline of Msps protein levels was regulated through specific tRNAser UCC and tRNAser UCG decay. We identified RNase P, an essential housekeeping endonuclease, being responsible for LELNs-induced tRNAser UCC and tRNAser UCG decay. We further identified galacturonic acid-enriched pectin-type polysaccharide as the active factor in LELNs to increase bile resistance and downregulate tRNAser UCC and tRNAser UCG level in the LGG. Our study demonstrates a tRNA-based gene expression regulation mechanism among lactobacilli to increase bile resistance.


Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12.

  • Yun Teng‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors.

  • Ya-Min Tian‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Hypoxia inducible factor (HIF) is regulated by dual pathways involving oxygen-dependent prolyl and asparaginyl hydroxylation of its α-subunits. Prolyl hydroxylation at two sites within a central degradation domain promotes association of HIF-α with the von Hippel-Lindau ubiquitin E3 ligase and destruction by the ubiquitin-proteasome pathways. Asparaginyl hydroxylation blocks the recruitment of p300/CBP co-activators to a C-terminal activation domain in HIF-α. These hydroxylations are catalyzed by members of the Fe(II) and 2-oxoglutarate (2-OG) oxygenase family. Activity of the enzymes is suppressed by hypoxia, increasing both the abundance and activity of the HIF transcriptional complex. We have used hydroxy residue-specific antibodies to compare and contrast the regulation of each site of prolyl hydroxylation (Pro(402), Pro(564)) with that of asparaginyl hydroxylation (Asn(803)) in human HIF-1α. Our findings reveal striking differences in the sensitivity of these hydroxylations to hypoxia and to different inhibitor types of 2-OG oxygenases. Hydroxylation at the three sites in endogenous human HIF-1α proteins was suppressed by hypoxia in the order Pro(402) > Pro(564) > Asn(803). In contrast to some predictions from in vitro studies, prolyl hydroxylation was substantially more sensitive than asparaginyl hydroxylation to inhibition by iron chelators and transition metal ions; studies of a range of different small molecule 2-OG analogues demonstrated the feasibility of selectively inhibiting either prolyl or asparaginyl hydroxylation within cells.


Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice (Oryza sativa).

  • Babi Ramesh Reddy Nallamilli‎ et al.
  • PloS one‎
  • 2014‎

Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.


Proteomic and transcriptional profiling of rat amygdala following social play.

  • Navatha Alugubelly‎ et al.
  • Behavioural brain research‎
  • 2019‎

Social play is the most characteristic form of social interaction which is necessary for adolescents to develop proper cognitive, emotional, and social competency. The information available on neural substrates and the mechanism involved in social play is limited. This study characterized social play by proteomic and transcriptional profiling studies. Social play was performed on male Sprague Dawley rats on postnatal day 38 and protein and gene expression in the amygdala was determined following behavioral testing. The proteomic analysis led to the identification of 170 differentially expressed proteins (p ≤ 0.05) with 67 upregulated and 103 downregulated proteins. The transcriptomic analysis led to the identification of 188 genes (FDR ≤ 0.05) with 55 upregulated and 133 downregulated genes. DAVID analysis of gene/protein expression data revealed that social play altered GABAergic signaling, glutamatergic signaling, and G-protein coupled receptor (GPCR) signaling. These data suggest that the synaptic levels of GABA and glutamate increased during play. Ingenuity Pathway Analysis (IPA) confirmed these alterations. IPA also revealed that differentially expressed genes/proteins in our data had significant over representation of neurotransmitter signaling systems, including the opioid, serotonin, and dopamine systems, suggesting that play alters the systems involved in the regulation of reward. In addition, corticotropin-releasing hormone signaling was altered indicating that an increased level of stress occurs during play. Overall, our data suggest that increased inhibitory GPCR signaling in these neurotransmitter pathways occurs following social play as a physiological response to regulate the induced level of reward and stress and to maintain the excitatory-inhibitory balance in the neurotransmitter systems.


Proceedings of the 15th Annual UT-KBRIN Bioinformatics Summit 2016 : Cadiz, KY, USA. 8-10 April 2016.

  • Eric C. Rouchka‎ et al.
  • BMC bioinformatics‎
  • 2016‎

I1 Proceedings of the Fifteenth Annual UT- KBRIN Bioinformatics Summit 2016 Eric C. Rouchka, Julia H. Chariker, Benjamin J. Harrison, Juw Won Park P1 CC-PROMISE: Projection onto the Most Interesting Statistical Evidence (PROMISE) with Canonical Correlation to integrate gene expression and methylation data with multiple pharmacologic and clinical endpoints Xueyuan Cao, Stanley Pounds, Susana Raimondi, James Downing, Raul Ribeiro, Jeffery Rubnitz, Jatinder Lamba P2 Integration of microRNA-mRNA interaction networks with gene expression data to increase experimental power Bernie J Daigle, Jr. P3 Designing and writing software for in silico subtractive hybridization of large eukaryotic genomes Deborah Burgess, Stephanie Gehrlich, John C Carmen P4 Tracking the molecular evolution of Pax gene Nicholas Johnson; Chandrakanth Emani P5 Identifying genetic differences in thermally dimorphic and state specific fungi using in silico genomic comparison Stephanie Gehrlich, Deborah Burgess, John C Carmen P6 Identification of conserved genomic regions and variation therein amongst Cetartiodactyla species using next generation sequencing Kalpani De Silva, Michael P Heaton, Theodore S Kalbfleisch P7 Mining physiological data to identify patients with similar medical events and phenotypes Teeradache Viangteeravat, Rahul Mudunuri, Oluwaseun Ajayi, Fatih Şen, Eunice Y Huang P8 Smart brief for home health monitoring Mohammad Mohebbi, Luaire Florian, Douglas J Jackson, John F Naber P9 Side-effect term matching for computational adverse drug reaction predictions AKM Sabbir, Sally R Ellingson P10 Enrichment vs robustness: A comparison of transcriptomic data clustering metrics Yuping Lu, Charles A Phillips, Michael A Langston P11 Deep neural networks for transcriptome-based cancer classification Rahul K Sevakula, Raghuveer Thirukovalluru, Nishchal K. Verma, Yan Cui P12 Motif discovery using K-means clustering Mohammed Sayed, Juw Won Park P13 Large scale discovery of active enhancers from nascent RNA sequencing Jing Wang, Qi Liu, Yu Shyr P14 Computationally characterizing genomic pipelines and benchmarking results using GATK best practices on the high performance computing cluster at the University of Kentucky Xiaofei Zhang, Sally R Ellingson P15 Development of approaches enabling the identification of abnormal gene expression from RNA-Seq in personalized oncology Naresh Prodduturi, Gavin R Oliver, Diane Grill, Jie Na, Jeanette Eckel-Passow, Eric W Klee P16 Processing RNA-Seq data of plants infected with coffee ringspot virus Michael M Goodin, Mark Farman, Harrison Inocencio, Chanyong Jang, Jerzy W Jaromczyk, Neil Moore, Kelly Sovacool P17 Comparative transcriptomics of three Acinetobacter baumanii clinical isolates with different antibiotic resistance patterns Leon Dent, Mike Izban, Sammed Mandape, Shruti Sakhare, Siddharth Pratap, Dana Marshall P18 Metagenomic assessment of possible microbial contamination in the equine reference genome assembly M Scotty DePriest, James N MacLeod, Theodore S Kalbfleisch P19 Molecular evolution of cancer driver genes Chandrakanth Emani, Hanady Adam, Ethan Blandford, Joel Campbell, Joshua Castlen, Brittany Dixon, Ginger Gilbert, Aaron Hall, Philip Kreisle, Jessica Lasher, Bethany Oakes, Allison Speer, Maximilian Valentine P20 Biorepository Laboratory Information Management System Naga Satya V Rao Nagisetty, Rony Jose, Teeradache Viangteeravat, Robert Rooney, David Hains


Synergistic Effect of Biphasic Calcium Phosphate and Platelet-Rich Fibrin Attenuate Markers for Inflammation and Osteoclast Differentiation by Suppressing NF-κB/MAPK Signaling Pathway in Chronic Periodontitis.

  • Anil Kumar‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Periodontitis is characterized by excessive osteoclastic activity, which is closely associated with inflammation. It is well established that MAPK/NF-kB axis is a key signaling pathway engaged in osteoclast differentiation. It is stated that that biphasic calcium phosphate (BCP) and platelet-rich fibrin (PRF) have significant antiostoeclastogenic effects in chronic periodontitis.


Murine Norovirus Interaction with Enterobacter cloacae Leads to Changes in Membrane Stability and Packaging of Lipid and Metabolite Vesicle Content.

  • Chanel A Mosby‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Outer membrane vesicles (OMVs) are a primary means of communication for Gram-negative bacteria. The specific role of vesicle components in cellular communication and how components are packaged are still under investigation, but a correlation exists between OMV biogenesis and content. The two primary mechanisms of OMV biogenesis are membrane blebbing and explosive cell lysis, and vesicle content is based on the biogenesis mechanism. Hypervesiculation, which can be induced by stress conditions, also influences OMV content. Norovirus interaction with Enterobacter cloacae induces stress responses leading to increased OMV production and changes in DNA content, protein content, and vesicle size. The presence of genomic DNA and cytoplasmic proteins in these OMVs suggests some of the vesicles are formed by explosive cell lysis, so reduction or loss of these components indicates a shift away from this mechanism of biogenesis. Based on this, further investigation into bacterial stability and OMV content was conducted. Results showed that norovirus induced a dramatic shift in OMV lipid content. Specifically, the increased accumulation of phospholipids is associated with increased blebbing, thereby supporting previous observations that noroviruses shift the mechanism of OMV biogenesis. Slight differences in OMV metabolite content were also observed. While norovirus induced changes in OMV content, it did not change the lipid content of the bacterial outer membrane or the metabolite content of the bacterial cell. Overall, these results indicate that norovirus induces significant changes to OMV lipid architecture and cargo, which may be linked to a change in the mechanism of vesicle biogenesis. IMPORTANCE Extracellular vesicles from commensal bacteria are recognized for their importance in modulating host immune responses, and vesicle content is related to their impact on the host. Therefore, understanding how vesicles are formed and how their content shifts in response to stress conditions is necessary for elucidating their downstream functions. Our recent work has demonstrated that interactions between noroviruses and Enterobacter cloacae induce bacterial stress responses leading to hypervesiculation. In this article, we characterize and compare the lipid and metabolomic cargo of E. cloacae vesicles generated in the presence and absence of norovirus and show that viral interactions induce significant changes in vesicle content. Furthermore, we probe how these changes and changes to the bacterial cell may be indicative of a shift in the mechanism of vesicle biogenesis. Importantly, we find that noroviruses induce significant changes in vesicle lipid architecture and cargo that may be responsible for the immunogenic activity of these vesicles.


Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota.

  • Yun Teng‎ et al.
  • Cell host & microbe‎
  • 2018‎

The gut microbiota can be altered by dietary interventions to prevent and treat various diseases. However, the mechanisms by which food products modulate commensals remain largely unknown. We demonstrate that plant-derived exosome-like nanoparticles (ELNs) are taken up by the gut microbiota and contain RNAs that alter microbiome composition and host physiology. Ginger ELNs (GELNs) are preferentially taken up by Lactobacillaceae in a GELN lipid-dependent manner and contain microRNAs that target various genes in Lactobacillus rhamnosus (LGG). Among these, GELN mdo-miR7267-3p-mediated targeting of the LGG monooxygenase ycnE yields increased indole-3-carboxaldehyde (I3A). GELN-RNAs or I3A, a ligand for aryl hydrocarbon receptor, are sufficient to induce production of IL-22, which is linked to barrier function improvement. These functions of GELN-RNAs can ameliorate mouse colitis via IL-22-dependent mechanisms. These findings reveal how plant products and their effects on the microbiome may be used to target specific host processes to alleviate disease.


PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications.

  • Benedikt M Kessler‎ et al.
  • Cell biochemistry and biophysics‎
  • 2011‎

Deubiquitinating enzymes (DUBs) constitute a diverse protein family and their impact on numerous biological and pathological processes has now been widely appreciated. Many DUB functions have to be tightly controlled within the cell, and this can be achieved in several ways, such as substrate-induced conformational changes, binding to adaptor proteins, proteolytic cleavage, and post-translational modifications (PTMs). This review is focused on the role of PTMs including monoubiquitination, sumoylation, acetylation, and phosphorylation as characterized and putative regulative factors of DUB function. Although this aspect of DUB functionality has not been yet thoroughly studied, PTMs represent a versatile and reversible method of controlling the role of DUBs in biological processes. In several cases PTMs might constitute a feedback mechanism insuring proper functioning of the ubiquitin proteasome system and other DUB-related pathways.


Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability.

  • Cornelia Meisenberg‎ et al.
  • Nucleic acids research‎
  • 2012‎

APE1 (Ref-1) is an essential human protein involved in DNA damage repair and regulation of transcription. Although the cellular functions and biochemical properties of APE1 are well characterized, the mechanism involved in regulation of the cellular levels of this important DNA repair/transcriptional regulation enzyme, remains poorly understood. Using an in vitro ubiquitylation assay, we have now purified the human E3 ubiquitin ligase UBR3 as a major activity that polyubiquitylates APE1 at multiple lysine residues clustered on the N-terminal tail. We further show that a knockout of the Ubr3 gene in mouse embryonic fibroblasts leads to an up-regulation of the cellular levels of APE1 protein and subsequent genomic instability. These data propose an important role for UBR3 in the control of the steady state levels of APE1 and consequently error free DNA repair.


Salmonella enterica Serovar Typhimurium Alters the Extracellular Proteome of Macrophages and Leads to the Production of Proinflammatory Exosomes.

  • Winnie W Hui‎ et al.
  • Infection and immunity‎
  • 2018‎

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.


Long-term Changes in the Central Amygdala Proteome in Rats with a History of Chronic Cocaine Self-administration.

  • Peter U Hámor‎ et al.
  • Neuroscience‎
  • 2020‎

The central nucleus of the amygdala (CeA) is a striatum-like structure that contains mainly inhibitory circuits controlling a repertoire of (mal)adaptive behaviors related to pain, anxiety, motivation, and addiction. Neural activity in the CeA is also necessary for the expression of persistent and robust drug seeking, also termed 'incubation of drug craving.' However, neuroadaptations within this brain region supporting incubated drug craving have not been characterized. Here, we conducted a comprehensive analysis of protein expression in the CeA of male rats after prolonged (45-day) abstinence from extended-access cocaine self-administration using a quantitative proteomic approach. The proteomic analysis identified 228 unique proteins altered in cocaine rats relative to animals that received saline. Out of the identified proteins, 160 were downregulated, while 68 upregulated. Upregulation of tyrosine hydroxylase and downregulation of neural cell-adhesion protein contactin-1 were validated by immunoblotting. Follow-up analysis by the Ingenuity Pathway Analysis tool revealed alterations in protein networks associated with several neurobehavioral disorders, cellular function and morphology, as well as axogenesis, long-term potentiation, and receptor signaling pathways. This study suggests that chronic cocaine self-administration, followed by a prolonged abstinence results in reorganization of specific protein signaling networks within the CeA that may underlie incubated cocaine craving and identifies potential novel 'druggable' targets for the treatment of cocaine use disorder (CUD).


Characterization and proteomic analysis of outer membrane vesicles from a commensal microbe, Enterobacter cloacae.

  • Sutonuka Bhar‎ et al.
  • Journal of proteomics‎
  • 2021‎

Outer membrane vesicles (OMVs) are membrane-enclosed spherical entities released by gram-negative bacteria and are important for bacterial survival under stress conditions. There have been numerous studies on OMVs released by gram-negative pathogenic bacteria, but an understanding of the functions and characteristics of the OMVs produced by commensal microbes is still lacking. Enterobacter cloacae is a gram-negative commensal bacterium present in the human gut microbiome, but this organism can also function as an opportunistic pathogen. Understanding the OMV-mediated communication route between bacteria-bacteria or bacteria-host is essential for the determination of the biological functions of the commensal bacterium in the gut and delineating between benign and virulent characteristics. In this study, we have described a proteome of E. cloacae OMVs, which are membrane vesicles in a size range of 20-300 nm. Proteomic analysis showed the presence of membrane-bound proteins, including transporters, receptors, signaling molecules, and protein channels. The physical and proteomic analyses also indicate this bacterium uses two mechanisms for OMV production. This study is one of the few existing descriptions of the proteomic profile of OMVs generated by a commensal Proteobacteria, and the first report of OMVs produced by E. cloacae. SIGNIFICANCE: This study prioritizes the importance of understanding the vesicular proteome of the human commensal bacterium, Enterobacter cloacae. We demonstrate for the first time that the gram-negative bacterium E. cloacae ATCC 13047 produces outer membrane vesicles (OMVs). The proteomic analysis showed enrichment of membrane-bound proteins in these vesicles. Understanding the cargo proteins of OMVs will help in exploring the physiological and functional role of these vesicles in the human microbiome and how they assist in the conversion of a bacterium from commensal to pathogen under certain conditions. While EM images reveal vesicles budding from the bacterial surface, the presence of cytoplasmic proteins and genomic DNA within the OMVs indicate that explosive cell lysis is an additional mechanism of biogenesis for these OMVs along with outer membrane blebbing. This research encourages future work on characterizing membrane vesicles produced by commensal bacterial and investigating their role in cell to cell communication.


Designing an immunoinformatic vaccine for peri-implantitis using a structural biology approach.

  • Pradeep Kumar Yadalam‎ et al.
  • Saudi journal of biological sciences‎
  • 2022‎

Peri-implantitis is a destructive inflammatory process that affects the soft and hard tissues around dental implants. porphyromonas gingivalis, an anaerobic gram-negative bacterium, appears to be the main culprit. Since there is no efficient and specific vaccine to treat peri-implantitis, the goal of our research has been to develop a multi-epitope vaccination utilizing an immunoinformatics approach that targeted P. gingivalis type I fim A.


Leishmania infection-derived extracellular vesicles drive transcription of genes involved in M2 polarization.

  • Lisa E Emerson‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2022‎

Although it is known that the composition of extracellular vesicles (EVs) is determined by the characteristics of the cell and its environment, the effects of intracellular infection on EV composition and functions are not well understood. We had previously shown that cultured macrophages infected with Leishmania parasites release EVs (LiEVs) containing parasite-derived molecules. In this study we show that LdVash, a molecule previously identified in LiEVs from L. donovani infected RAW264.7 macrophages, is widely distributed in the liver of L. donovani infected mice. This result shows for the first time that parasite molecules are released in EVs and distributed in infected tissues where they can be endocytosed by cells in the liver, including macrophages that significantly increase numbers as the infection progresses. To evaluate the potential impact of LiEVs on macrophage functions, we show that primary peritoneal exudate macrophages (PECs) express transcripts of signature molecules of M2 macrophages such as arginase 1, IL-10, and IL-4R when incubated with LiEVs. In comparative studies that illustrate how intracellular pathogens control the composition and functions of EVs released from macrophages, we show that EVs from RAW264.7 macrophages infected with Salmonella Typhimurium activate PECs to express transcripts of signature molecules of M1 macrophages such as iNOS, TNF alpha, and IFN-gamma and not M2 signature molecules. Finally, in contrast to the polarized responses observed in in vitro studies of macrophages, both M1 and M2 signature molecules are detected in L. donovani infected livers, although they exhibit differences in their spatial distribution in infected tissues. In conclusion, EVs produced by macrophages during Leishmania infection lead to the gene expression consistent with M2 polarization. In contrast, the EVs produced during S. Typhimurium infection stimulated the transcription of genes associated with M1 polarization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: