Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Enzymatic process optimization for the in vitro production of isoprene from mevalonate.

  • Tao Cheng‎ et al.
  • Microbial cell factories‎
  • 2017‎

As an important bulk chemical for synthetic rubber, isoprene can be biosynthesized by robust microbes. But rational engineering and optimization are often demanded to make the in vivo process feasible due to the complexities of cellular metabolism. Alternative synthetic biochemistry strategies are in fast development to produce isoprene or isoprenoids in vitro.


Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.

  • Yujin Cao‎ et al.
  • Scientific reports‎
  • 2019‎

Longifolene is a naturally occurring tricyclic sesquiterpene widely used in many different fields. Up to now, this valuable terpene was mainly manufactured from the high-boiling fraction of certain pine resins. Microbial production can be a promising alternative to the extraction from natural plant sources. Here, we present the metabolic engineering strategy to assemble biosynthetic pathway for longifolene production in Escherichia coli. E. coli was rendered to produce longifolene by heterologously expressing a codon optimized longifolene synthase from Picea abies. Augmentation of the metabolic flux to farnesyl pyrophosphate (FPP) by different FPP synthases conferred a 1.8-fold increase in longifolene production. An additional enhancement of longifolene production (up to 2.64 mg/L) was achieved by introducing an exogenous mevalonate pathway. Under fed-batch conditions, the best-performing strain was able to produce 382 mg/L of longifolene in a 5 L bioreactor. These results demonstrated the feasibility of producing longifolene by microbial fermentation and could serve as the basis for the construction of more robust strains in the future.


A systematic optimization of styrene biosynthesis in Escherichia coli BL21(DE3).

  • Changqing Liu‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Styrene is a versatile commodity petrochemical used as a monomer building-block for the synthesis of many useful polymers. Although achievements have been made on styrene biosynthesis in microorganisms, several bottleneck problems limit factors for further improvement in styrene production.


Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method.

  • Sumeng Wang‎ et al.
  • Biotechnology for biofuels‎
  • 2017‎

Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene.


Biosynthesis of acetylacetone inspired by its biodegradation.

  • Yifei Zhou‎ et al.
  • Biotechnology for biofuels‎
  • 2020‎

Acetylacetone is a commercially bulk chemical with diverse applications. However, the traditional manufacturing methods suffer from many drawbacks such as multiple steps, harsh conditions, low yield, and environmental problems, which hamper further applications of petrochemical-based acetylacetone. Compared to conventional chemical methods, biosynthetic methods possess advantages such as being eco-friendly, and having mild conditions, high selectivity and low potential costs. It is urgent to develop biosynthetic route for acetylacetone to avoid the present problems.


An Aminotransferase from Enhydrobacter aerosaccus to Obtain Optically Pure β-Phenylalanine.

  • Xinming Feng‎ et al.
  • ACS omega‎
  • 2020‎

An aminotransferase ω-TAEn was identified from Enhydrobacter aerosaccus. The ω-TAEn was successfully expressed in Escherichia coli and the obtained enzyme showed activity toward β-phenylalanine (β-phe) at optimal conditions. For optically pure (R)-β-phe, 50% yield was observed by kinetic resolution of racemic amino with pyruvate as the amino acceptor. To obtain (S)-β-phe, the lipase/ω-TAEn catalytic system was adopted. The ω-TAEn showed strict stereoselectivity to the amino donor. The formation of (S)-β-phe was observed using 3-aminobutyric acid as the amino donor, and (S)-β-phe was obtained by asymmetric synthesis with a yield of 82%.


Application of enhanced electronegative multimodal chromatography as the primary capture step for immunoglobulin G purification.

  • Yanli Wang‎ et al.
  • AMB Express‎
  • 2018‎

In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.


Highly efficient biosynthesis of β-caryophyllene with a new sesquiterpene synthase from tobacco.

  • Tao Cheng‎ et al.
  • Biotechnology for biofuels and bioproducts‎
  • 2022‎

β-Caryophyllene, a kind of bicyclic sesquiterpene, is mainly used as a spice in the food and cosmetic industries. Furthermore, it also has significant value in the pharmaceutical industry and is now considered to be used as a new fuel. As a chemical energy heterotrophic microorganism, Escherichia coli can produce a large amount of acetyl-CoA through aerobic respiration, and acetyl-CoA is the common precursor substance in the biosynthesis of all terpenoids. Therefore, E. coli has the potential to be a cell factory to produce terpenoids.


The design and synthesis of high efficiency adsorption materials for 1,3-propanediol: physical and chemical structure regulation.

  • Kexin Zheng‎ et al.
  • RSC advances‎
  • 2020‎

In this study, a series of polystyrene-divinylbenzene resins with precise physical structure regulation and chemical modification were successfully synthesized. The regulation of Friedel-Crafts reaction conditions resulted in several physical resins with various BET surface areas and pore structures, while the adsorption of 1,3-propanediol revealed that the molecular size and other physical properties exhibited a moderate contribution to the adsorption of hydrophilic compounds. The adsorption processes between 1,3-propanediol and nitrogen, oxygen and boron functional group modified resins were further explored, and boronic acid modified resins named PS-3NB and PS-SBT exhibited higher adsorption capacities than commercial resin CHA-111. The adsorption capacity of PS-3NB and PS-SBT reached 17.54 mg g-1 and 17.23 mg g-1, respectively, which were 37% and 35% higher than that of commercial resin CHA-111. Furthermore, the adsorption mechanism demonstrated that the content of boronic acid, solution pH and adsorbate hydrophobicity were the primary adsorption driving forces. Herein, we provided a method to modify polystyrene-divinylbenzene materials with boronic acid to selectively adsorb hydrophilic polyols via the specific affinity between boronic acid and diol molecule.


Characterization of an efficient N-oxygenase from Saccharothrix sp. and its application in the synthesis of azomycin.

  • Chuanle Fan‎ et al.
  • Biotechnology for biofuels and bioproducts‎
  • 2023‎

The nitro group constitutes a significant functional moiety within numerous valuable substances, such as nitroimidazoles, a class of antimicrobial drugs exhibiting broad spectrum activity. Conventional chemical methods for synthesizing nitro compounds suffer from harsh conditions, multiple steps, and environmental issues. Biocatalysis has emerged as a promising alternative to overcome these drawbacks, with certain enzymes capable of catalyzing nitro group formation gradually being discovered in nature. Nevertheless, the practical application is hindered by the restricted diversity and low catalytic activity exhibited by the reported nitrifying enzymes.


Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction.

  • Xinyue Sui‎ et al.
  • Communications biology‎
  • 2024‎

Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.


Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening.

  • Meijie Li‎ et al.
  • Microbial cell factories‎
  • 2019‎

As an essential platform chemical mostly used for rubber synthesis, isoprene is produced in industry through chemical methods, derived from petroleum. As an alternative, bio-production of isoprene has attracted much attention in recent years. Previous researches were mostly focused on key enzymes to improve isoprene production. In this research, besides screening of key enzymes, we also paid attention to expression intensity of non-key enzymes.


Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion.

  • Min Liu‎ et al.
  • BMC microbiology‎
  • 2017‎

Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals.


Genome mining of 2-phenylethanol biosynthetic genes from Enterobacter sp. CGMCC 5087 and heterologous overproduction in Escherichia coli.

  • Changqing Liu‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

2-Phenylethanol (2-PE) is a higher aromatic alcohol that is widely used in the perfumery, cosmetics, and food industries and is also a potentially valuable next-generation biofuel. In our previous study, a new strain Enterobacter sp. CGMCC 5087 was isolated to produce 2-PE from glucose through the phenylpyruvate pathway.


Improved cis-Abienol production through increasing precursor supply in Escherichia coli.

  • Tao Cheng‎ et al.
  • Scientific reports‎
  • 2020‎

cis-Abienol, a natural diterpene-diol isolated from balsam fir (Abies balsamea), can be employed as precursors for the semi-synthesis of amber compounds, which are sustainable replacement for ambergris and widely used in the fragmented industry. This study combinatorially co-expressed geranyl diphosphate synthase, geranylgeranyl diphosphate synthase, Labda-13-en-8-ol diphosphate synthase and diterpene synthase, with the best combination achieving ~ 0.3 mg/L of cis-abienol. An additional enhancement of cis-abienol production (up to 8.6 mg/L) was achieved by introducing an exogenous mevalonate pathway which was divided into the upper pathway containing acetyl-CoA acetyltransferase/HMG-CoA reductase and HMG-CoA synthase and the lower pathway containing mevalonate kinase, phosphomevalonate kinase, pyrophosphate mevalonate decarboxylase and isopentenyl pyrophosphate isomerase. The genetically modified strain carrying chromosomal copy of low genes of the mevalonate with the trc promoter accumulated cis-abienol up to 9.2 mg/L in shake flask. Finally, cis-abienol titers of ~ 220 mg/L could be achieved directly from glucose using this de novo cis-abienol-producing E. coli in high-cell-density fermentation. This study demonstrates a microbial process to apply the E. coli cell factory in the biosynthesis of cis-abienol.


An in vitro synthetic biosystem based on acetate for production of phloroglucinol.

  • Rubing Zhang‎ et al.
  • BMC biotechnology‎
  • 2017‎

Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology.


Prophylactic and therapeutic potential of magnolol-loaded PLGA-PEG nanoparticles in a chronic murine model of allergic asthma.

  • Junyi Wang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2023‎

Magnolol is a chemically defined and active polyphenol extracted from magnolia plants possessing anti-allergic activity, but its low solubility and rapid metabolism dramatically hinder its clinical application. To improve the therapeutic effects, magnolol-encapsulated polymeric poly (DL-lactide-co-glycolide)-poly (ethylene glycol) (PLGA-PEG) nanoparticles were constructed and characterized. The prophylactic and therapeutic efficacy in a chronic murine model of OVA-induced asthma and the mechanisms were investigated. The results showed that administration of magnolol-loaded PLGA-PEG nanoparticles significantly reduced airway hyperresponsiveness, lung tissue eosinophil infiltration, and levels of IL-4, IL-13, TGF-β1, IL-17A, and allergen-specific IgE and IgG1 in OVA-exposed mice compared to their empty nanoparticles-treated mouse counterparts. Magnolol-loaded PLGA-PEG nanoparticles also significantly prevented mouse chronic allergic airway mucus overproduction and collagen deposition. Moreover, magnolol-encapsulated PLGA-PEG nanoparticles showed better therapeutic effects on suppressing allergen-induced airway hyperactivity, airway eosinophilic inflammation, airway collagen deposition, and airway mucus hypersecretion, as compared with magnolol-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles or magnolol alone. These data demonstrate the protective effect of magnolol-loaded PLGA-PEG nanoparticles against the development of allergic phenotypes, implicating its potential usefulness for the asthma treatment.


Rural environment reduces allergic inflammation by modulating the gut microbiota.

  • Zhaowei Yang‎ et al.
  • Gut microbes‎
  • 2022‎

Rural environments and microbiota are linked to a reduction in the prevalence of allergies. However, the mechanism underlying the reduced allergies modulated by rural residency is unclear. Here, we assessed gut bacterial composition and metagenomics in urban and rural children in the EuroPrevall-INCO cohort. Airborne dusts, including mattress and rural henhouse dusts, were profiled for bacterial and fungal composition by amplicon sequencing. Mice were repeatedly exposed to intranasal dust extracts and evaluated for their effects on ovalbumin (OVA)-induced allergic airway inflammation, and gut microbiota restoration was validated by fecal microbiota transplant (FMT) from dust-exposed donor mice. We found that rural children had fewer allergies and unique gut microbiota with fewer Bacteroides and more Prevotella. Indoor dusts in rural environments harbored higher endotoxin level and diversity of bacteria and fungi, whereas indoor urban dusts were enriched with Aspergillus and contained elevated pathogenic bacteria. Intranasal administration of rural dusts before OVA sensitization reduced respiratory eosinophils and blood IgE level in mice and also led to a recovery of gut bacterial diversity and Ruminiclostridium in the mouse model. FMT restored the protective effect by reducing OVA-induced lung eosinophils in recipient mice. Together, these results support a cause-effect relationship between exposure to dust microbiota and allergy susceptibility in children and mice. Specifically, rural environmental exposure modulated the gut microbiota, which was essential in reducing allergy in children from Southern China. Our findings support the notion that the modulation of gut microbiota by exposure to rural indoor dust may improve allergy prevention.


Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli.

  • Stephen Tamekou Lacmata‎ et al.
  • PloS one‎
  • 2017‎

Poly(3-hydroxypropionate) (P3HP) is a thermoplastic with great compostability and biocompatibility, and can be produced through several biosynthetic pathways, in which the glycerol pathway achieved the highest P3HP production. However, exogenous supply of vitamin B12 was required to maintain the activity of glycerol dehydratase, resulting in high production cost. To avoid the addition of VB12, we have previously constructed a P3HP biosynthetic route with β-alanine as intermediate, and the present study aimed to improve the P3HP production of this pathway. L-aspartate decarboxylase PanD was found to be the rate-limiting enzyme in the β-alanine pathway firstly. To improve the pathway efficiency, PanD was screened from four different sources (Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Corynebacterium glutamicum). And PanD from C. glutamicum was found to have the highest activity, the P3HP production was improved in flask cultivation with this enzyme. To further improve the production, the host strain was screened and the culture condition was optimized. Under optimal conditions, production and content of P3HP reached to 10.2 g/L and 39.1% (wt/wt [cell dry weight]) in an aerobic fed-batch fermentation. To date, this is the highest P3HP production without VB12.


Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression.

  • Rubing Zhang‎ et al.
  • Microbial cell factories‎
  • 2017‎

Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: