Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo.

  • Bu-Yeo Kim‎ et al.
  • Environmental research‎
  • 2019‎

Bisphenol A (BPA), a synthetic monomer commonly included in the daily products, has a structure similar to the estrogen receptor agonist. Therefore BPA has been anticipated to interfere with the hormone metabolisms and cause diverse pathological conditions. But the effects of BPA on the genetic landscapes of liver or hepatic cells have not been fully established. Gene expressional changes induced by low- or high-dose of BPA were evaluated in 3D cultured human hepatoma cells (HepG2 spheroids) in vitro at 0, 0.5, 5 and 200 μM and liver of rats exposed to BPA at 0, 0.5 and 250 mg/kg for 90 days in vivo. Functional enrichment analysis, pathway activity measurement and network analysis were performed using BPA-responsive genes. Treatment with BPA changed a lot of gene expressions in both HepG2 spheroids and rat livers depending on doses of BPA. Functional enrichment and pathway analysis show that lipid or steroid metabolism-related functions were altered by BPA in both HepG2 spheroids and livers of rats. Lipid metabolism-related functions altered by BPA formed a large cluster encompassing lipid biosynthesis, steroid metabolic process and cholesterol regulation process. It was also observed that distribution of pathway activities was correlated between HepG2 spheroids and rat livers at low-dose of BPA. Distance distribution in protein-protein interaction network also evidenced the closeness of BPA-responsive genes to metabolism pathways which include lipid metabolism. Collectively, we demonstrated that BPA greatly influenced overall gene expression and biological functions in both human hepatoma spheroids and rat liver, in which lipid- or steroid metabolism-associated genes were significantly altered by the exposure to BPA.


Emission Characteristics of Particulate Matter, Volatile Organic Compounds, and Trace Elements from the Combustion of Coals in Mongolia.

  • Mona Loraine M Barabad‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

This study characterized emissions of particulate matter (PM), volatile organic compounds (VOCs), heavy metals, and anions from Mongolian bituminous coals in a controlled heating experiment. Three coal samples from Alag Tolgoi (coal 1), Baganuur (coal 2), and Nalaikh (coal 3) were combusted at a constant heat flux of 50 kW/m² using a dual-cone calorimeter. The coal samples were commonly used in ger district of Ulaanbaatar, Mongolia. PM10 emission factors were 1122.9 ± 526.2, 958.1 ± 584.0, and 472.0 ± 57.1 mg/kg for coal samples 1, 2, and 3, respectively. PM with a diameter of 0.35⁻0.45 µm was dominant and accounted for 41, 34, and 48% of the total PM for coal samples 1, 2, and 3, respectively. The emissions of PM and VOC from coals commonly used in Ulaanbaatar, Mongolia were significant enough to cause extremely high levels of indoor and outdoor air pollution.


TPS-HAMMER: improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.

  • Guorong Wu‎ et al.
  • NeuroImage‎
  • 2010‎

We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario.


RABBIT: rapid alignment of brains by building intermediate templates.

  • Songyuan Tang‎ et al.
  • NeuroImage‎
  • 2009‎

A brain image registration algorithm, referred to as RABBIT, is proposed to achieve fast and accurate image registration with the help of an intermediate template generated by a statistical deformation model. The statistical deformation model is built by principal component analysis (PCA) on a set of training samples of brain deformation fields that warp a selected template image to the individual brain samples. The statistical deformation model is capable of characterizing individual brain deformations by a small number of parameters, which is used to rapidly estimate the brain deformation between the template and a new individual brain image. The estimated deformation is then used to warp the template, thus generating an intermediate template close to the individual brain image. Finally, the shape difference between the intermediate template and the individual brain is estimated by an image registration algorithm, e.g., HAMMER. The overall registration between the template and the individual brain image can be achieved by directly combining the deformation fields that warp the template to the intermediate template, and the intermediate template to the individual brain image. The algorithm has been validated for spatial normalization of both simulated and real magnetic resonance imaging (MRI) brain images. Compared with HAMMER, the experimental results demonstrate that the proposed algorithm can achieve over five times speedup, with similar registration accuracy and statistical power in detecting brain atrophy.


Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

  • Minjeong Kim‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2018‎

The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.


Ibuprofen Increases the Hepatotoxicity of Ethanol through Potentiating Oxidative Stress.

  • Minjeong Kim‎ et al.
  • Biomolecules & therapeutics‎
  • 2021‎

Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.


Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing.

  • Bora Jang‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2022‎

Dicer substrate RNA is an alternative gene silencing agent to canonical siRNA. Enhanced in vitro gene silencing can be achieved with RNA substrates by facilitating Ago2 loading of dsRNA after Dicer processing. However, the in vivo use of Dicer substrate RNA has been hindered by its instability and immunogenicity in the body due to the lack of proper chemical modification in the structure. Here, we report a universal chemical modification approach for Dicer substrate RNA nanostructures by optimizing protein-RNA interactions in the RNAi pathway. Proteins involved in the RNAi pathway were utilized for evaluating their recognition and binding of substrate RNA. It was found that conventional chemical modifications could severely affect the binding and processing of substrate RNA, consequently reducing RNAi activity. Protein-RNA interaction guided chemical modification was introduced to RNA nanostructures, and their gene silencing activity was assessed. The optimized RNA nanostructures showed excellent binding and processability with RNA binding proteins and offered the enhancement of in vivo EC50 up to 1/8 of its native form.


Stem Cell Factor SOX9 Interacts with a Cell Death Regulator RIPK1 and Results in Escape of Cancer Stem Cell Death.

  • Mijung Oh‎ et al.
  • Cells‎
  • 2022‎

High-grade ovarian cancer (HGOC) is the most lethal gynecological cancer, with high metastasis and recurrence. Cancer stem cells (CSCs) are responsible for its apoptosis resistance, cancer metastasis, and recurrence. Thus, targeting CSCs would be a promising strategy for overcoming chemotherapy resistance and improving patient prognosis in HGOC. Among upregulated oncogenic proteins in HGOC, we found that transcription factor SOX9 showed a strong correlation with stemness-regulating ALDH1A1 and was localized predominantly in the cytoplasm of HGOC with lymph node metastasis. In order to address the role of unusual cytoplasmic SOX9 and to explore its underlying mechanism in HGOC malignancy, a Y2H assay was used to identify a necroptotic cell death-associated cytoplasmic protein, receptor-interacting serine/threonine protein kinase 1 (RIPK1), as a novel SOX9-interacting partner and further mapped their respective interacting domains. The C-terminal region containing the transactivation domain of SOX9 interacted with the death domain of R1PK1. Consistent with its stemness-promoting function, SOX9 knockdown in vitro resulted in changes in cell morphology, cell cycle, stem cell marker expression, cell invasion, and sphere formation. Furthermore, in vivo knockdown completely inhibited tumor growth in mouse xenograft model. We propose that cytoplasmic SOX9-mediated cell death suppression would contribute to cancer stem cell survival in HGOC.


The Korean Speech Recognition Sentences: A Large Corpus for Evaluating Semantic Context and Language Experience in Speech Perception.

  • Jieun Song‎ et al.
  • Journal of speech, language, and hearing research : JSLHR‎
  • 2023‎

The aim of this study was to develop and validate a large Korean sentence set with varying degrees of semantic predictability that can be used for testing speech recognition and lexical processing.


Prognostic significance of senescence-related tumor microenvironment genes in head and neck squamous cell carcinoma.

  • Young Chan Lee‎ et al.
  • Aging‎
  • 2023‎

The impact of the senescence related microenvironment on cancer prognosis and therapeutic response remains poorly understood. In this study, we investigated the prognostic significance of senescence related tumor microenvironment genes (PSTGs) and their potential implications for immunotherapy response. Using the Cancer Genome Atlas- head and neck squamous cell carcinoma (HNSC) data, we identified two subtypes based on the expression of PSTGs, acquired from tumor-associated senescence genes, tumor microenvironment (TME)-related genes, and immune-related genes, using consensus clustering. Using the LASSO, we constructed a risk model consisting of senescence related TME core genes (STCGs). The two subtypes exhibited significant differences in prognosis, genetic alterations, methylation patterns, and enriched pathways, and immune infiltration. Our risk model stratified patients into high-risk and low-risk groups and validated in independent cohorts. The high-risk group showed poorer prognosis and immune inactivation, suggesting reduced responsiveness to immunotherapy. Additionally, we observed a significant enrichment of STCGs in stromal cells using single-cell RNA transcriptome data. Our findings highlight the importance of the senescence related TME in HNSC prognosis and response to immunotherapy. This study contributes to a deeper understanding of the complex interplay between senescence and the TME, with potential implications for precision medicine and personalized treatment approaches in HNSC.


S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.

  • Guorong Wu‎ et al.
  • Human brain mapping‎
  • 2014‎

Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications.


Negative Air Ions Alleviate Particulate Matter-Induced Inflammation and Oxidative Stress in the Human Keratinocyte Cell Line HaCaT.

  • Minjeong Kim‎ et al.
  • Annals of dermatology‎
  • 2021‎

Recent studies have revealed that particulate matter induces inflammation, oxidative stress, and several skin diseases. Experimental results have also shown that negative air ions are highly effective in removing particulate matter-induced inflammation.


Evaluation of Primary Pterygia on Basis of the Loss of Vertical Length of Plica Semilunaris.

  • Minjeong Kim‎ et al.
  • Translational vision science & technology‎
  • 2021‎

To propose a new grading system for primary pterygia based on the morphological loss of vertical length of plica semilunaris (LPS).


Clinical Factors Associated with the Early Reduction of Corneal Sensitivity in Herpes Zoster Ophthalmicus.

  • Minjeong Kim‎ et al.
  • Korean journal of ophthalmology : KJO‎
  • 2022‎

To identify clinical factors associated with the early reduction of corneal sensitivity (CS) in patients with herpes zoster ophthalmicus (HZO).


Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels.

  • Minjeong Kim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Rhododenol (RD), a whitening cosmetic ingredient, was withdrawn from the market due to RD-induced leukoderma (RIL). While many attempts have been made to clarify the mechanism underlying RIL, RIL has not been fully understood yet. Indeed, affected subjects showed uneven skin pigmentation, but the features are different from vitiligo, a skin hypopigmentary disorder, alluding to events more complex than simple melanocyte cytotoxicity. Here, we discovered that rhododenol treatment reduced the number of melanocytes in a pigmented 3D human skin model, Melanoderm™, confirming the melanocyte toxicity of RD. Of note, melanocytes that survived in the RD treated tissues exhibited altered morphology, such as extended dendrites and increased cell sizes. Consistently with this, sub-cytotoxic level of RD increased cell size and elongated dendrites in B16 melanoma cells. Morphological changes of B16 cells were further confirmed in the immunocytochemistry of treated cells for actin and tubulin. Even more provoking, RD up-regulated the expression of tyrosinase and TRP1 in the survived B16 cells. Evaluation of mRNA expression of cytoskeletal proteins suggests that RD altered the cytoskeletal dynamic favoring cell size expansion and melanosome maturation. Collectively, these results suggest that RD not only induces cytotoxicity in melanocytes but also can lead to a profound perturbation of melanocyte integrity even at sub-cytotoxic levels.


Pregnancy Outcomes Following Laparoscopic and Open Surgery in Pelvis during Pregnancy: a Nationwide Population-based Study in Korea.

  • Hyun Woong Cho‎ et al.
  • Journal of Korean medical science‎
  • 2021‎

Non-obstetric surgery during pregnancy is associated with adverse obstetric and fetal outcomes. The aim of this study was to investigate the risk of adverse pregnancy outcomes for women who underwent non-obstetric pelvic surgery during pregnancy compared with that of women that did not undergo surgery.


Improved image registration by sparse patch-based deformation estimation.

  • Minjeong Kim‎ et al.
  • NeuroImage‎
  • 2015‎

Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we employ thin-plate splines (TPS) to interpolate a dense initial deformation field by considering all key points as the control points. Thus, the conventional image registration problem becomes much easier in the sense that we only need to compute the remaining small deformation for completing the registration of the subject to the template. Experimental results on both simulated and real data show that the registration performance can be significantly improved after integrating our patch-based deformation prediction framework into the existing registration algorithms.


Generation of a persistently infected MDBK cell line with natural bovine spongiform encephalopathy (BSE).

  • Dongseob Tark‎ et al.
  • PloS one‎
  • 2015‎

Bovine spongiform encephalopathy (BSE) is a zoonotic transmissible spongiform encephalopathy (TSE) thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD). Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE) and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK) cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.


LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes.

  • Jeongjoon Choi‎ et al.
  • PloS one‎
  • 2012‎

Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode.


Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation.

  • Minjeong Kim‎ et al.
  • Biomolecules & therapeutics‎
  • 2018‎

Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: