Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Ensembl Genomes 2016: more genomes, more complexity.

  • Paul Julian Kersey‎ et al.
  • Nucleic acids research‎
  • 2016‎

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans.

  • Mikkel Christensen‎ et al.
  • Diabetes‎
  • 2011‎

To evaluate the glucose dependency of glucose-dependent insulinotropic polypeptide (GIP) effects on insulin and glucagon release in 10 healthy male subjects ([means ± SEM] aged 23 ± 1 years, BMI 23 ± 1 kg/m(2), and HbA(1c) 5.5 ± 0.1%).


Ensembl Genomes 2022: an expanding genome resource for non-vertebrates.

  • Andrew D Yates‎ et al.
  • Nucleic acids research‎
  • 2022‎

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Clinical potential of lixisenatide once daily treatment for type 2 diabetes mellitus.

  • Andreas B Petersen‎ et al.
  • Diabetes, metabolic syndrome and obesity : targets and therapy‎
  • 2013‎

The glucagon-like peptide (GLP)-1 receptor agonist lixisenatide (Lyxumia(®)) was approved for marketing by the European Medicines Agency in February 2013 and has been evaluated in a clinical study program called GetGoal. Lixisenatide activates the GLP-1 receptor and thereby exercises the range of physiological effects generated by GLP-1, which consist of increased insulin secretion, inhibition of glucagon secretion, and decreased gastrointestinal motility alongside the promotion of satiety. In the GetGoal study program, lixisenatide demonstrated significant reductions in glycated hemoglobin (HbA1c), and fasting and postprandial plasma glucose compared with placebo. The effect on glycemia was evident, with both monotherapy and in combination with insulin and various oral antidiabetic agents. Furthermore, a general trend towards reduced bodyweight was reported. In head-to-head trials with the other GLP-1 receptor agonists (exenatide and liraglutide) on the market, lixisenatide demonstrated a superior effect with respect to reduction in postprandial plasma glucose and had a tendency towards fewer adverse events. However, lixisenatide seemed to be less efficient or at best, equivalent to exenatide and liraglutide in reducing HbA1c, fasting plasma glucose, and bodyweight. The combination of a substantial effect on postprandial plasma glucose and a labeling with once daily administration separates lixisenatide from the other GLP-1 receptor agonists. The combination of basal insulin, having a lowering effect on fasting plasma glucose, and lixisenatide, curtailing the postprandial glucose excursions, makes sense from a clinical point of view. Not surprisingly, lixisenatide is undergoing clinical development as a combination product with insulin glargine (Lantus(®)). At present the main place in therapy of lixisenatide seems to be in combination with basal insulin. A large multicenter study will determine the future potential of lixisenatide in preventing cardiovascular events and mortality, in patients with type 2 diabetes and recent acute coronary syndrome.


Ensembl Genomes 2020-enabling non-vertebrate genomic research.

  • Kevin L Howe‎ et al.
  • Nucleic acids research‎
  • 2020‎

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice.

  • Heather I Fraser‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci--Idd18.2 and Idd18.4--within the boundaries of this cluster of disease-associated genes. Idd18.2 is 1.31 Mb and contains 18 genes, including Ptpn22, which encodes a phosphatase that negatively regulates T and B cell signaling. The human ortholog of Ptpn22, PTPN22, is associated with numerous autoimmune diseases, including T1D. We, therefore, assessed Ptpn22 as a candidate for Idd18.2; resequencing of the NOD Ptpn22 allele revealed 183 single nucleotide polymorphisms with the C57BL/6J (B6) allele--6 exonic and 177 intronic. Functional studies showed higher expression of full-length Ptpn22 RNA and protein, and decreased TCR signaling in congenic strains with B6-derived Idd18.2 susceptibility alleles. The 953-kb Idd18.4 locus contains eight genes, including the candidate Cd2. The CD2 pathway is associated with the human autoimmune disease, multiple sclerosis, and mice with NOD-derived susceptibility alleles at Idd18.4 have lower CD2 expression on B cells. Furthermore, we observed that susceptibility alleles at Idd18.2 can mask the protection provided by Idd10/Cd101 or Idd18.1/Vav3 and Idd18.3. In summary, we describe two new T1D loci, Idd18.2 and Idd18.4, candidate genes within each region, and demonstrate the complex nature of genetic interactions underlying the development of T1D in the NOD mouse model.


Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes.

  • Angela Kim‎ et al.
  • eLife‎
  • 2021‎

Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.


Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts.

  • Bent Larsen Petersen‎ et al.
  • BMC biotechnology‎
  • 2019‎

CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand.


Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity.

  • Emma E Hamilton-Williams‎ et al.
  • Mammalian genome : official journal of the International Mammalian Genome Society‎
  • 2013‎

Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset.


Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species.

  • Paul Julian Kersey‎ et al.
  • Nucleic acids research‎
  • 2018‎

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including genome sequence, gene models, transcript sequence, genetic variation, and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments and expansions. These include the incorporation of almost 20 000 additional genome sequences and over 35 000 tracks of RNA-Seq data, which have been aligned to genomic sequence and made available for visualization. Other advances since 2015 include the release of the database in Resource Description Framework (RDF) format, a large increase in community-derived curation, a new high-performance protein sequence search, additional cross-references, improved annotation of non-protein-coding genes, and the launch of pre-release and archival sites. Collectively, these changes are part of a continuing response to the increasing quantity of publicly-available genome-scale data, and the consequent need to archive, integrate, annotate and disseminate these using automated, scalable methods.


Ensembl Genomes 2013: scaling up access to genome-wide data.

  • Paul Julian Kersey‎ et al.
  • Nucleic acids research‎
  • 2014‎

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.


Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99.

  • Mikkel Christensen‎ et al.
  • PloS one‎
  • 2023‎

High-throughput screening (HTS) methods for characterization of microbial production of polyhydroxyalkanoates (PHA) are currently under investigated, despite the advent of such systems in related fields. In this study, phenotypic microarray by Biolog PM1 screening of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99 identified 49 and 54 carbon substrates to be metabolized by these bacteria, respectively. Growth on 15 (Halomonas sp. R5-57) and 14 (Pseudomonas sp. MR4-99) carbon substrates was subsequently characterized in 96-well plates using medium with low nitrogen concentration. Bacterial cells were then harvested and analyzed for putative PHA production using two different Fourier transform infrared spectroscopy (FTIR) systems. The FTIR spectra obtained from both strains contained carbonyl-ester peaks indicative of PHA production. Strain specific differences in the carbonyl-ester peak wavenumber indicated that the PHA side chain configuration differed between the two strains. Confirmation of short chain length PHA (scl-PHA) accumulation in Halomonas sp. R5-57 and medium chain length PHA (mcl-PHA) in Pseudomonas sp. MR4-99 was done using Gas Chromatography-Flame Ionization Detector (GC-FID) analysis after upscaling to 50 mL cultures supplemented with glycerol and gluconate. The strain specific PHA side chain configurations were also found in FTIR spectra of the 50 mL cultures. This supports the hypothesis that PHA was also produced in the cells cultivated in 96-well plates, and that the HTS approach is suitable for analysis of PHA production in bacteria. However, the carbonyl-ester peaks detected by FTIR are only indicative of PHA production in the small-scale cultures, and appropriate calibration and prediction models based on combining FTIR and GC-FID data needs to be developed and optimized by performing more extensive screenings and multivariate analyses.


T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research.

  • Oliver S Burren‎ et al.
  • Nucleic acids research‎
  • 2011‎

T1DBase (http://www.t1dbase.org) is web platform, which supports the type 1 diabetes (T1D) community. It integrates genetic, genomic and expression data relevant to T1D research across mouse, rat and human and presents this to the user as a set of web pages and tools. This update describes the incorporation of new data sets, tools and curation efforts as well as a new website design to simplify site use. New data sets include curated summary data from four genome-wide association studies relevant to T1D, HaemAtlas-a data set and tool to query gene expression levels in haematopoietic cells and a manually curated table of human T1D susceptibility loci, incorporating genetic overlap with other related diseases. These developments will continue to support T1D research and allow easy access to large and complex T1D relevant data sets.


The Effect of Cholesterol on Membrane-Bound Islet Amyloid Polypeptide.

  • Mikkel Christensen‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.


High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741T and in silico analyses of the genus specific PhaC2 polymerase variant.

  • Mikkel Christensen‎ et al.
  • Microbial cell factories‎
  • 2021‎

Several members of the bacterial Halomonadacea family are natural producers of polyhydroxyalkanoates (PHA), which are promising materials for use as biodegradable bioplastics. Type-strain species of Cobetia are designated PHA positive, and recent studies have demonstrated relatively high PHA production for a few strains within this genus. Industrially relevant PHA producers may therefore be present among uncharacterized or less explored members. In this study, we characterized PHA production in two marine Cobetia strains. We further analyzed their genomes to elucidate pha genes and metabolic pathways which may facilitate future optimization of PHA production in these strains.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: