Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Opposing roles for CD34 in B16 melanoma tumor growth alter early stage vasculature and late stage immune cell infiltration.

  • Steven Maltby‎ et al.
  • PloS one‎
  • 2011‎

Tumor growth and metastasis are determined by the complex interplay of factors, including those intrinsic to tumor cells and extrinsic factors associated with the tumor microenvironment. Our previous work demonstrated key roles for CD34 in the maintenance of vascular integrity and eosinophil and mast cell homing. Since both of these functions affect tumor development, we characterized the effect of CD34 ablation on tumor growth using the B16F1 melanoma model. Intriguingly, we found that CD34 plays a biphasic role in tumor progression. In early growth, both subcutaneous-injected tumors and intravenous-injected lung metastases grew more slowly in Cd34(-/-) mice. This correlated with abnormal vessel morphology and increased vascular permeability in these mice. Bone marrow transplantation experiments confirmed that this reflects a non-hematopoietic function of CD34. At later stages, subcutaneous tumor growth was accelerated in Cd34(-/-) mice and surpassed growth in wildtype mice. Bone marrow chimera experiments demonstrated this difference was due to a hematopoietic function for CD34 and, correspondingly we found reduced intra-tumor mast cell numbers in Cd34(-/-) mice. In aggregate, our analysis reveals a novel role for CD34 in both early and late tumor growth and provides novel insights into the role of the tumor microenvironment in tumor progression.


Cardiac magnetic resonance-derived myocardial scar is associated with echocardiographic response and clinical prognosis of left bundle branch area pacing for cardiac resynchronization therapy.

  • Zhongli Chen‎ et al.
  • Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology‎
  • 2023‎

Left bundle branch area pacing (LBBAP) is a novel approach for cardiac resynchronization therapy (CRT), but the impact of myocardial substrate on its effect is poorly understood. This study aims to assess the association of cardiac magnetic resonance (CMR)-derived scar burden and the response of CRT via LBBAP.


SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/β-Catenin and Hippo/YAP Signaling.

  • Menno J Oudhoff‎ et al.
  • Developmental cell‎
  • 2016‎

Intestinal tumorigenesis is a result of mutations in signaling pathways that control cellular proliferation, differentiation, and survival. Mutations in the Wnt/β-catenin pathway are associated with the majority of intestinal cancers, while dysregulation of the Hippo/Yes-Associated Protein (YAP) pathway is an emerging regulator of intestinal tumorigenesis. In addition, these closely related pathways play a central role during intestinal regeneration. We have previously shown that methylation of the Hippo transducer YAP by the lysine methyltransferase SETD7 controls its subcellular localization and function. We now show that SETD7 is required for Wnt-driven intestinal tumorigenesis and regeneration. Mechanistically, SETD7 is part of a complex containing YAP, AXIN1, and β-catenin, and SETD7-dependent methylation of YAP facilitates Wnt-induced nuclear accumulation of β-catenin. Collectively, these results define a methyltransferase-dependent regulatory mechanism that links the Wnt/β-catenin and Hippo/YAP pathways during intestinal regeneration and tumorigenesis.


The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling.

  • Theo Klein‎ et al.
  • Nature communications‎
  • 2015‎

Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.


Effects of Cardiac Resynchronization Therapy on Cardiac Remodeling and Contractile Function: Results From Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE).

  • Martin St John Sutton‎ et al.
  • Journal of the American Heart Association‎
  • 2015‎

Cardiac resynchronization therapy results in improved ejection fraction in patients with heart failure. We sought to determine whether these effects were mediated by changes in contractility, afterload, or volumes.


Effect of Interventricular Electrical Delay on Atrioventricular Optimization for Cardiac Resynchronization Therapy.

  • Michael R Gold‎ et al.
  • Circulation. Arrhythmia and electrophysiology‎
  • 2018‎

Routine atrioventricular optimization (AVO) has not been shown to improve outcomes with cardiac resynchronization therapy (CRT). However, more recently subgroup analyses of multicenter CRT trials have identified electrocardiographic or lead positions associated with benefit from AVO. Therefore, the purpose of this analysis was to evaluate whether interventricular electrical delay modifies the impact of AVO on reverse remodeling with CRT.


The Actin-Disassembly Protein Glia Maturation Factor γ Enhances Actin Remodeling and B Cell Antigen Receptor Signaling at the Immune Synapse.

  • Nikola Deretic‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Signaling by the B cell antigen receptor (BCR) initiates actin remodeling. The assembly of branched actin networks that are nucleated by the Arp2/3 complex exert outward force on the plasma membrane, allowing B cells to form membrane protrusions that can scan the surface of antigen-presenting cells (APCs). The resulting Arp2/3 complex-dependent actin retrograde flow promotes the centripetal movement and progressive coalescence of BCR microclusters, which amplifies BCR signaling. Glia maturation factor γ (GMFγ) is an actin disassembly-protein that releases Arp2/3 complex-nucleated actin filaments from actin networks. By doing so, GMFγ could either oppose the actions of the Arp2/3 complex or support Arp2/3 complex-nucleated actin polymerization by contributing to the recycling of actin monomers and Arp2/3 complexes. We now show that reducing the levels of GMFγ in human B cell lines via transfection with a specific siRNA impairs the ability of B cells to spread on antigen-coated surfaces, decreases the velocity of actin retrograde flow, diminishes the coalescence of BCR microclusters into a central cluster at the B cell-APC contact site, and decreases APC-induced BCR signaling. These effects of depleting GMFγ are similar to what occurs when the Arp2/3 complex is inhibited. This suggests that GMFγ cooperates with the Arp2/3 complex to support BCR-induced actin remodeling and amplify BCR signaling at the immune synapse.


MALT1-Dependent Cleavage of HOIL1 Modulates Canonical NF-κB Signaling and Inflammatory Responsiveness.

  • Shan-Yu Fung‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Nuclear factor kappa B (NF-κB) is a critical transcription factor involved in regulating cell activation, inflammation, and survival. The linear ubiquitin chain assembly complex (LUBAC) which consists of HOIL1, HOIP, and SHARPIN, catalyzes the linear ubiquitination of target proteins-a post-translational modification that is essential for NF-κB activation. Human germline pathogenic variants that dysregulate linear ubiquitination and NF-κB signaling are associated with immunodeficiency and/or autoinflammation including dermatitis, recurrent fevers, systemic inflammation and enteropathy. We previously identified MALT1 paracaspase as a novel negative regulator of LUBAC by proteolytic cleavage of HOIL1. To directly investigate the impact of HOIL1 cleavage activity on the inflammatory response, we employed a stable transduction system to express and directly compare non-cleavable HOIL1 with wild-type HOIL1 in primary HOIL1-deficient patient skin fibroblasts. We discovered that non-cleavable HOIL1 resulted in enhanced NF-κB signaling in response to innate stimuli. Transcriptomics revealed enrichment of inflammation and proinflammatory cytokine-related pathways after stimulation. Multiplexed cytokine assays confirmed a 'hyperinflammatory' phenotype in these cells. This work highlights the physiological importance of MALT1-dependent cleavage and modulation of HOIL1 on NF-κB signaling and inflammation, provides a mechanism for the autoinflammation observed in MALT1-deficient patients, and will inform the development of therapeutics that target MALT1 paracaspase and LUBAC function in treating autoinflammatory skin diseases.


Amplatzer Amulet Left Atrial Appendage Occluder Versus Watchman Device for Stroke Prophylaxis (Amulet IDE): A Randomized, Controlled Trial.

  • Dhanunjaya Lakkireddy‎ et al.
  • Circulation‎
  • 2021‎

Percutaneous closure of the left atrial appendage (LAA) is an alternative to chronic oral anticoagulation to reduce stroke risk in patients with nonvalvular atrial fibrillation. The Amulet IDE trial (Amplatzer Amulet Left Atrial Appendage Occluder IDE Trial) was designed to evaluate the safety and effectiveness of the dual-seal mechanism of the Amulet LAA occluder compared with the Watchman device.


The Wdr1-LIMK-Cofilin Axis Controls B Cell Antigen Receptor-Induced Actin Remodeling and Signaling at the Immune Synapse.

  • Madison Bolger-Munro‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

When B cells encounter membrane-bound antigens, the formation and coalescence of B cell antigen receptor (BCR) microclusters amplifies BCR signaling. The ability of B cells to probe the surface of antigen-presenting cells (APCs) and respond to APC-bound antigens requires remodeling of the actin cytoskeleton. Initial BCR signaling stimulates actin-related protein (Arp) 2/3 complex-dependent actin polymerization, which drives B cell spreading as well as the centripetal movement and coalescence of BCR microclusters at the B cell-APC synapse. Sustained actin polymerization depends on concomitant actin filament depolymerization, which enables the recycling of actin monomers and Arp2/3 complexes. Cofilin-mediated severing of actin filaments is a rate-limiting step in the morphological changes that occur during immune synapse formation. Hence, regulators of cofilin activity such as WD repeat-containing protein 1 (Wdr1), LIM domain kinase (LIMK), and coactosin-like 1 (Cotl1) may also be essential for actin-dependent processes in B cells. Wdr1 enhances cofilin-mediated actin disassembly. Conversely, Cotl1 competes with cofilin for binding to actin and LIMK phosphorylates cofilin and prevents it from binding to actin filaments. We now show that Wdr1 and LIMK have distinct roles in BCR-induced assembly of the peripheral actin structures that drive B cell spreading, and that cofilin, Wdr1, and LIMK all contribute to the actin-dependent amplification of BCR signaling at the immune synapse. Depleting Cotl1 had no effect on these processes. Thus, the Wdr1-LIMK-cofilin axis is critical for BCR-induced actin remodeling and for B cell responses to APC-bound antigens.


Small molecule inhibitors of the Pyk2 and FAK kinases modulate chemoattractant-induced migration, adhesion and Akt activation in follicular and marginal zone B cells.

  • Kathy W K Tse‎ et al.
  • Cellular immunology‎
  • 2012‎

B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.


Differences in clinical characteristics and reported quality of life of men and women undergoing cardiac resynchronization therapy.

  • Bruce L Wilkoff‎ et al.
  • ESC heart failure‎
  • 2020‎

Response to cardiac resynchronization therapy (CRT) is known to be associated with a number of clinical characteristics, including QRS duration and morphology, gender, height, and the aetiology of heart failure (HF). We assessed the relation of gender and baseline characteristics with QRS duration and Kansas City Cardiomyopathy Questionnaire.


Rationale and design of the AdaptResponse trial: a prospective randomized study of cardiac resynchronization therapy with preferential adaptive left ventricular-only pacing.

  • Gerasimos Filippatos‎ et al.
  • European journal of heart failure‎
  • 2017‎

The AdaptResponse trial is designed to test the hypothesis that preferential adaptive left ventricular-only pacing with the AdaptivCRT® algorithm reduces the incidence of the combined endpoint of all-cause mortality and intervention for heart failure (HF) decompensation, compared with conventional cardiac resynchronization therapy (CRT), among patients with a CRT indication, left bundle branch block (LBBB) and normal atrioventricular (AV) conduction. The AdaptResponse study is a prospective, randomized, controlled, single-blinded, multicentre, clinical trial (ClinicalTrials.gov Identifier: NCT02205359), conducted at up to 200 centres worldwide. Following enrolment and baseline assessment, eligible subjects will be implanted with a CRT system containing the AdaptivCRT algorithm, and randomized in a 1:1 fashion to either a treatment ('AdaptivCRT') or control ('Conventional CRT') group. The study is designed to observe a primary endpoint in 1100 patients ('event-driven') and approximately 3000 patients will be randomized. The primary endpoint is the composite of all-cause mortality and intervention for HF decompensation; secondary endpoints include all-cause mortality, intervention for HF decompensation, clinical composite score (CCS) at 6 months, atrial fibrillation, quality of life measured by the Kansas City Cardiomyopathy Questionnaire (KCCQ), health outcome measured by the EQ-5D instrument, all-cause readmission after a HF admission, and cost-effectiveness. The AdaptResponse clinical trial is powered to assess clinical endpoints and is expected to provide definitive evidence on the incremental utility of AdaptivCRT-enhanced CRT systems.


Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor.

  • Spencer A Freeman‎ et al.
  • Nature communications‎
  • 2015‎

Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.


Limitations of Qdot labelling compared to directly-conjugated probes for single particle tracking of B cell receptor mobility.

  • Libin Abraham‎ et al.
  • Scientific reports‎
  • 2017‎

Single-particle tracking (SPT) is a powerful method for exploring single-molecule dynamics in living cells with nanoscale spatiotemporal resolution. Photostability and bright fluorescence make quantum dots (Qdots) a popular choice for SPT. However, their large size could potentially alter the mobility of the molecule of interest. To test this, we labelled B cell receptors on the surface of B-lymphocytes with monovalent Fab fragments of antibodies that were either linked to Qdots via streptavidin or directly conjugated to the small organic fluorophore Cy3. Imaging of receptor mobility by total internal reflection fluorescence microscopy (TIRFM), followed by quantitative single-molecule diffusion and confinement analysis, definitively showed that Qdots sterically hinder lateral mobility regardless of the substrate to which the cells were adhered. Qdot labelling also drastically altered the frequency with which receptors transitioned between apparent slow- and fast-moving states and reduced the size of apparent confinement zones. Although we show that Qdot-labelled probes can detect large differences in receptor mobility, they fail to resolve subtle differences in lateral diffusion that are readily detectable using Cy3-labelled Fabs. Our findings highlight the utility and limitations of using Qdots for TIRFM and wide-field-based SPT, and have significant implications for interpreting SPT data.


Arp2/3 complex-driven spatial patterning of the BCR enhances immune synapse formation, BCR signaling and B cell activation.

  • Madison Bolger-Munro‎ et al.
  • eLife‎
  • 2019‎

When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells, this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.


An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure.

  • John G Cleland‎ et al.
  • European heart journal‎
  • 2013‎

Cardiac resynchronization therapy (CRT) with or without a defibrillator reduces morbidity and mortality in selected patients with heart failure (HF) but response can be variable. We sought to identify pre-implantation variables that predict the response to CRT in a meta-analysis using individual patient-data.


Racial difference in atrial size and extracellular matrix homeostatic response to hypertension: Is this a potential mechanism of reduced atrial fibrillation in African Americans?

  • Patrick Badertscher‎ et al.
  • Heart rhythm O2‎
  • 2021‎

Atrial fibrillation (AF) is less common in African Americans (AA) than Caucasians (C) despite a higher prevalence of risk factors such as hypertension (HTN).


Primary Results From the Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction (UNTOUCHED) Trial.

  • Michael R Gold‎ et al.
  • Circulation‎
  • 2021‎

The subcutaneous (S) implantable cardioverter-defibrillator (ICD) is safe and effective for sudden cardiac death prevention. However, patients in previous S-ICD studies had fewer comorbidities, had less left ventricular dysfunction, and received more inappropriate shocks (IAS) than in typical transvenous ICD trials. The UNTOUCHED trial (Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction) was designed to evaluate the IAS rate in a more typical, contemporary ICD patient population implanted with the S-ICD using standardized programming and enhanced discrimination algorithms.


Risk factors for the development of premature ventricular complex-induced cardiomyopathy: a systematic review and meta-analysis.

  • Jeanne du Fay de Lavallaz‎ et al.
  • Journal of interventional cardiac electrophysiology : an international journal of arrhythmias and pacing‎
  • 2023‎

Premature ventricular complexes (PVCs) are a potentially reversible cause of heart failure. However, the characteristics of patients most likely to develop impaired left ventricular function are unclear. Hence, the objective of this study is to systematically assess risk factors for the development of PVC-induced cardiomyopathy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: