Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and apoptosis in chronic obstructive pulmonary disease.

  • Shuyue Xia‎ et al.
  • Life sciences‎
  • 2019‎

Chronic obstructive pulmonary disease (COPD) is a disease caused by cigarette smoke, which has been emerging as a serious health problem worldwide. The aim of this study is to explore the mRNA expression profile of lung tissues from the COPD rats and to characterize the role of Forkhead box C1 (Foxc1) in COPD.


Long noncoding RNAs are rarely translated in two human cell lines.

  • Balázs Bánfai‎ et al.
  • Genome research‎
  • 2012‎

Data from the Encyclopedia of DNA Elements (ENCODE) project show over 9640 human genome loci classified as long noncoding RNAs (lncRNAs), yet only ~100 have been deeply characterized to determine their role in the cell. To measure the protein-coding output from these RNAs, we jointly analyzed two recent data sets produced in the ENCODE project: tandem mass spectrometry (MS/MS) data mapping expressed peptides to their encoding genomic loci, and RNA-seq data generated by ENCODE in long polyA+ and polyA- fractions in the cell lines K562 and GM12878. We used the machine-learning algorithm RuleFit3 to regress the peptide data against RNA expression data. The most important covariate for predicting translation was, surprisingly, the Cytosol polyA- fraction in both cell lines. LncRNAs are ~13-fold less likely to produce detectable peptides than similar mRNAs, indicating that ~92% of GENCODE v7 lncRNAs are not translated in these two ENCODE cell lines. Intersecting 9640 lncRNA loci with 79,333 peptides yielded 85 unique peptides matching 69 lncRNAs. Most cases were due to a coding transcript misannotated as lncRNA. Two exceptions were an unprocessed pseudogene and a bona fide lncRNA gene, both with open reading frames (ORFs) compromised by upstream stop codons. All potentially translatable lncRNA ORFs had only a single peptide match, indicating low protein abundance and/or false-positive peptide matches. We conclude that with very few exceptions, ribosomes are able to distinguish coding from noncoding transcripts and, hence, that ectopic translation and cryptic mRNAs are rare in the human lncRNAome.


Primate-specific oestrogen-responsive long non-coding RNAs regulate proliferation and viability of human breast cancer cells.

  • Chin-Yo Lin‎ et al.
  • Open biology‎
  • 2016‎

Long non-coding RNAs (lncRNAs) are transcripts of a recently discovered class of genes which do not code for proteins. LncRNA genes are approximately as numerous as protein-coding genes in the human genome. However, comparatively little remains known about lncRNA functions. We globally interrogated changes in the lncRNA transcriptome of oestrogen receptor positive human breast cancer cells following treatment with oestrogen, and identified 127 oestrogen-responsive lncRNAs. Consistent with the emerging evidence that most human lncRNA genes lack homologues outside of primates, our evolutionary analysis revealed primate-specific lncRNAs downstream of oestrogen signalling. We demonstrate, using multiple functional assays to probe gain- and loss-of-function phenotypes in two oestrogen receptor positive human breast cancer cell lines, that two primate-specific oestrogen-responsive lncRNAs identified in this study (the oestrogen-repressed lncRNA BC041455, which reduces cell viability, and the oestrogen-induced lncRNA CR593775, which increases cell viability) exert previously unrecognized functions in cell proliferation and growth factor signalling pathways. The results suggest that oestrogen-responsive lncRNAs are capable of altering the proliferation and viability of human breast cancer cells. No effects on cellular phenotypes were associated with control transfections. As heretofore unappreciated components of key signalling pathways in cancers, including the MAP kinase pathway, lncRNAs hence represent a novel mechanism of action for oestrogen effects on cellular proliferation and viability phenotypes. This finding warrants further investigation in basic and translational studies of breast and potentially other types of cancers, has broad relevance to lncRNAs in other nuclear hormone receptor pathways, and should facilitate exploiting and targeting these cell viability modulating lncRNAs in post-genomic therapeutics.


Effects of Different Positions and Angles of Implants in Maxillary Edentulous Jaw on Surrounding Bone Stress under Dynamic Loading: A Three-Dimensional Finite Element Analysis.

  • Xiaqing Liu‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2019‎

To evaluate the effects of different placements of mesial implants and different angles of distant implants in maxillary edentulous jaws on the stress on the implant and the surrounding bone tissue under dynamic loading.


Response of the Chinese Soft-Shelled Turtle to Acute Heat Stress: Insights From the Systematic Antioxidant Defense.

  • Wenyi Zhang‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Understanding the responses of animals to acute heat stress can help to reveal and predict the effect of more frequent extreme hot weather episodes on animal populations and ecosystems in the content of global climate change. Antioxidant defenses can help to protect animals against oxidative stress caused by intense temperature variation. In the present study, systematic antioxidant responses to acute heat stress (Δ15°C and maintained for 12 h) and subsequent recovery were assessed by evaluating gene transcript levels and relative enzyme activities in tissues of Pelodiscus sinensis, a subtropical freshwater turtle. Targets included nuclear factor erythroid 2-related factor 2 (Nrf2, the upstream transcription factor), antioxidant enzymes, and the glutathione (GSH) and ascorbic acid (AA) systems. Results showed three main patterns of expression change among antioxidant genes: (1) gene expression of Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase 4 (GPx 4), and catalase (CAT) increased in response to heat stress or recovery in the liver; (2) transcripts of most genes did not change in brain, liver, and kidney of P. sinensis; and (3) expression of several GST isoforms were affected by heat stress or recovery in brain and kidney. However, relative enzyme activities involved in antioxidant defense were little affected by acute heat stress and recovery, indicating a relatively conservative antioxidant response in P. sinensis. Furthermore, results for malondialdehyde (MDA) levels indicated that acute heat stress and recovery did not cause a net increase in oxidative damage in turtle tissues and, in particular, MDA levels in spleen decreased along with increased splenic ascorbic acid concentration. Overall, the present study revealed a conservative antioxidant response in P. sinensis, which may be indicative of a high basal stress tolerance and relate with adaptation to climate change in freshwater turtles.


Biodiversity exploration in autumn using environmental DNA in the South China sea.

  • Caoyun Diao‎ et al.
  • Environmental research‎
  • 2022‎

The South China Sea (SCS) is an important part of the Indo-Pacific convergence zone, with high biodiversity and abundant marine resources. Traditional methods are primarily used to monitor biodiversity. However, a few studies have used environmental DNA (eDNA) metabarcoding to research the assemblage structure of the SCS. This study used eDNA metabarcoding to survey the SCS assemblage and its relationship with environmental factors over a month-long time-series (August 30th to September 30th, 2020) of seawater samples from the central part of the SCS (9°-20°86' N, 113°-118°47' E). 32 stations were divided into six groups (A, B, C, D, E, F) according to longitude. We collected water samples, extracted eDNA, and amplified 18S rRNA gene V4 region (18S V4), 18S rRNA gene V9 region (18S V9), and 12S rRNA gene (12S). Krona diagrams were used to show species composition. We identified 192 phytoplankton, 104 invertebrate, and 61 fish species from 18S V4, 18S V9, and 12S, respectively. Generally, the three assemblage structures exhibited an increase in species diversity with increasing longitude. Group E had the highest fish diversity. Groups F and C had the highest phytoplankton and invertebrate diversity, respectively. Canonical correspondence analysis showed that four factors (chlorophyll a, depth, salinity, and temperature) were correlated with assemblage structure. Chlorophyll a was the main environmental factor that affected fish, phytoplankton, and invertebrate assemblage structures; salinity was strongly correlated with fish and invertebrate assemblage structures; temperature was a key factor that impacted fish and invertebrate assemblage structures; and depth was strongly correlated with invertebrate assemblage structure. Our results revealed that eDNA metabarcoding is a powerful tool for improving detection rate and using multiple markers is an effective approach for monitoring biodiversity. This study provided information that can be used to enhance biodiversity protection efforts in the SCS.


Identification of Novel Biomarkers for Predicting Prognosis and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma Based on ceRNA Network and Immune Infiltration Analysis.

  • Ya Guo‎ et al.
  • BioMed research international‎
  • 2021‎

Patients with head and neck squamous cell carcinoma (HNSCC) have poor prognosis and show poor responses to immune checkpoint (IC) inhibitor (ICI) therapy. Competing endogenous RNA (ceRNA) networks, tumor-infiltrating immune cells (TIICs), and ICIs may influence tumor prognosis and response rates to ICI therapy. This study is aimed at identifying prognostic and IC-related biomarkers and key TIIC signatures to improve prognosis and ICI therapy response in HNSCC patients.


Oridonin Alters Hepatic Urea Cycle via Gut Microbiota and Protects against Acetaminophen-Induced Liver Injury.

  • Mu-Keng Hong‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2021‎

Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the western world. Oridonin (OD), which is the major active ingredient of the traditional Chinese medicine Rabdosia rubescens, reportedly exerts anti-inflammatory and antioxidative effects. Here, we first find that OD protects against APAP-induced hepatotoxicity. The results of hepatic tissue-associated RNA-seq and metabolomics showed that the protective effects of OD were dependent upon urea cycle regulation. And such regulation of OD is gut microbiota partly dependent, as demonstrated by fecal microbiota transplantation (FMT). Furthermore, using 16S rRNA sequencing, we determined that OD significantly enriched intestinal Bacteroides vulgatus, which activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to regulate redox homeostasis against APAP by urea cycle. In conclusion, our study suggests that the Bacteroides vulgatus-urea cycle-Nrf2 axis may be a potential target for reducing APAP-induced liver injury, which is altered by OD.


Downregulation of Claudin5 promotes malignant progression and radioresistance through Beclin1-mediated autophagy in esophageal squamous cell carcinoma.

  • Shan Huang‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Esophageal squamous cell carcinoma (ESCC) is a highly prevalent and aggressive cancer with poor treatment outcomes. Despite the critical role of tight junction proteins in tumorigenesis, the involvement of Claudin5 in ESCC remains poorly understood. Thus, this study aimed to investigate the role of Claudin5 in ESCC malignant progression and radioresistance, as well as the underlying regulatory mechanisms.


The trichothecene neosolaniol stimulates an emetic response through neuropeptide Y2 and serotonin 3 receptors in mink.

  • Qinghua Wu‎ et al.
  • Toxicology‎
  • 2021‎

Type A trichothecene neosolaniol (NEO) is considered a potential risk to human and animal health by the European Food Safety Authority (EFSA). To date, available data do not allow making conclusions about the toxicological properties of this toxin. Trichothecenes have been previously demonstrated to induce emetic responses in mink, and this response has been associated with neurotransmitter peptide YY (PYY) and serotonin (5-hydroxytryptamine, 5-HT). The goal of this study was to compare emetic effects of NEO administered by intraperitoneal and oral routes and relate these effects to PYY and 5-HT. The effective doses resulting in emetic events in 50% of the animals following intraperitoneal and oral exposure to NEO were 0.4 and 0.09 mg/kg bw, respectively. This emetic response corresponded to elevated PYY and 5-HT levels. Blocking the neuropeptide Y2 receptor diminished emesis induction by PYY and NEO. The 5-HT3 receptor inhibitor granisetron completely restrained the induction of emesis by 5-HT and NEO. To summarize, our findings demonstrate that PYY and 5-HT play important roles in the NEO-induced emetic response.


Chinese medicine ulcer oil promotes the healing of diabetic foot ulcers.

  • Hui Jia‎ et al.
  • The Journal of international medical research‎
  • 2018‎

Objective This study aimed to investigate the mechanism by which Chinese herbal medicine ulcer oil (UO) accelerates ulcer healing in a diabetic ulcer rat model. Methods Sprague Dawley rats were allocated at random into four groups: a control group, a positive control group (PC), a UO treatment group and an ethacridine lactate solution treatment group. Subcutaneous tissue was surgically removed from the rats on days 3, 7 and 14. The levels of protein phosphotyrosine phosphatase 1B (PTP1B), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and advanced glycation end products (AGEs) were detected using western blot analysis. Results PTP1B protein expression was significantly lower in the UO group compared with the PC group. VEGF protein expression was significantly higher in the UO group than in the control group on day 3. PDGF protein expression in the UO group was significantly higher than in the PC group on day 3. AGE expression was significantly lower in the UO group than in the PC group. Conclusions UO may downregulate PTP1B and AGEs and upregulate VEGF and PDGF, which may contribute to the inhibition of the inflammatory response and promote the healing of diabetic foot ulcers.


DHW-221, a Dual PI3K/mTOR Inhibitor, Overcomes Multidrug Resistance by Targeting P-Glycoprotein (P-gp/ABCB1) and Akt-Mediated FOXO3a Nuclear Translocation in Non-small Cell Lung Cancer.

  • Mingyue Liu‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Multidrug resistance (MDR) is considered as a primary hindrance for paclitaxel failure in non-small cell lung cancer (NSCLC) patients, in which P-glycoprotein (P-gp) is overexpressed and the PI3K/Akt signaling pathway is dysregulated. Previously, we designed and synthesized DHW-221, a dual PI3K/mTOR inhibitor, which exerts a remarkable antitumor potency in NSCLC cells, but its effects and underlying mechanisms in resistant NSCLC cells remain unknown. Here, we reported for the first time that DHW-221 had favorable antiproliferative activity and suppressed cell migration and invasion in A549/Taxol cells in vitro and in vivo. Importantly, DHW-221 acted as a P-gp inhibitor via binding to P-gp, which resulted in decreased P-gp expression and function. A mechanistic study revealed that the DHW-221-induced FOXO3a nuclear translocation via Akt inhibition was involved in mitochondrial apoptosis and G0/G1 cell cycle arrest only in A549/Taxol cells and not in A549 cells. Interestingly, we observed that high-concentration DHW-221 reinforced the pro-paraptotic effect via stimulating endoplasmic reticulum (ER) stress and the mitogen-activated protein kinase (MAPK) pathway. Additionally, intragastrically administrated DHW-221 generated superior potency without obvious toxicity via FOXO3a nuclear translocation in an orthotopic A549/Taxol tumor mouse model. In conclusion, these results demonstrated that DHW-221, as a novel P-gp inhibitor, represents a prospective therapeutic candidate to overcome MDR in Taxol-resistant NSCLC treatment.


A Novel Small-Molecule Inhibitor of SREBP-1 Based on Natural Product Monomers Upregulates the Sensitivity of Lung Squamous Cell Carcinoma Cells to Antitumor Drugs.

  • De-Bin Ma‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays important roles in modulating the proliferation, metastasis, or resistance to antitumor agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma's inhibitor of SREBP-1), based on natural product monomers, was identified by screening the database of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of SREBP-1 and provided additional options for the treatment of LUSC.


Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.

  • Tanvir Alam‎ et al.
  • PloS one‎
  • 2014‎

Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.


The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer.

  • Zhixiong Fang‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2017‎

To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC).


Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat.

  • Yuanhong Xie‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2015‎

To investigate the effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rats, female Wistar rats were fed a high-cholesterol diet (HCD) for 28 d to generate hyperlipidemic models. Hyperlipidemic rats were assigned to four groups, which were individually treated with three different dosages of K. marxianus M3+HCD or physiological saline+HCD via oral gavage for 28 d. The total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in the serum and liver of the rats were measured using commercially available enzyme kits. In addition, the liver morphology was also examined using hematoxylin and eosin staining and optical microscopy. According to our results, the serum and liver TC, TG, LDL-C levels and atherogenic index (AI) were significantly decreased in rats orally administered K. marxianus M3 (p <0.01), and the HDL-C levels and anti atherogenic index (AAI) were significantly increased (p <0.01) compared to the control group. Moreover, K. marxianus M3 treatment also reduced the build-up of lipid droplets in the liver and exhibited normal hepatocytes, suggesting a protective effect of K. marxianus M3 in hyperlipidemic rats.


Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells.

  • Hongda Ma‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment.


High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

  • Leonard Lipovich‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.


Which is the best combination of TACE and Sorafenib for advanced hepatocellular carcinoma treatment? A systematic review and network meta-analysis.

  • Fan Feng‎ et al.
  • Pharmacological research‎
  • 2018‎

The aim of this study was to assess the comparative efficacy and safety of combination therapy with transarterial chemoembolization (TACE) and Sorafenib for patients with advanced hepatocellular carcinoma (HCC) through a systematic review and network meta-analysis and identify the best combination of TACE and Sorafenib. We searched databases for publications prior to May 2018. The prespecified efficacy outcomes were the objective response rate, overall survival rate, and time to progression. adverse effects included dermatologic, gastrointestinal, and general disorders. Subgroup analyses, meta-regression, and a network meta-analysis regarding two types of outcomes by different chemotherapy agents in TACE (5-fluorouracil, Adriamycin, Platinum, mitomycin C, hydroxycamptothecin) were included. The study is registered with PROSPERO (CRD42018098541). For efficacy outcomes, subgroups which included 5-fluorouracil and hydroxycamptothecin ranked higher than other chemotherapy agents, while mitomycin C ranked the lowest. For advanced effects, the use of mitomycin C or 5-fluorouracil as the chemotherapy agent ranked higher, while hydroxycamptothecin ranked the lowest. Therefore, we excluded 5-Fu and Mitomycin C in subsequent studies. Additionally, in the evaluation of primary adverse effects by the network meta-analysis, Platinum ranked the highest while hydroxycamptothecin ranked the lowest. Therefore, we excluded Platinum this time. Furthermore, all types of Adriamycin are not same, and some studies included two types of Adriamycin. The network meta-analysis results showed that the TACE (hydroxycamptothecin + pirarubicin) +Sorafenib arm and TACE (hydroxycamptothecin + epirubicin) +Sorafenib arm had significant efficacy differences. In conclusion, for patients with advanced HCC, combination therapy with HCPT plus THP/EPI in TACE and Sorfenib may be used as a first-line treatment.


Inhibition of Angiogenesis and Extracellular Matrix Remodeling: Synergistic Effect of Renin-Angiotensin System Inhibitors and Bevacizumab.

  • Tianshu Ren‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Bevacizumab (Bev) is a humanized vascular endothelial growth factor monoclonal antibody that is used with chemotherapeutic drugs for the treatment of metastatic colorectal cancer (mCRC). Bev-induced hypertension (HT) is the most common adverse reaction during clinical practice. However, at present, appropriate antihypertensive agents for Bev-induced HT are unavailable. In this study, retrospective analysis of clinical data from mCRC patients who received renin-angiotensin system inhibitors (RASIs) showed significant survival benefits of overall survival (OS) and progression-free survival (PFS) over patients who received calcium channel blockers (CCBs) and patients who received no antihypertensive drug (NO: Y2020046 retrospectively registered). An experiment of HCT116 colon cancer cell xenografts in mice confirmed that combined treatment of Bev and lisinopril (Lis), a RASI, synergistically inhibited subcutaneous tumor growth and enhanced the concentration of 5-fluorouracil (5-Fu) in tumor tissues. Our results showed that the addition of Lis did not interfere with the vascular normalization effect promoted by Bev, but also inhibited collagen and hyaluronic acid (HA) deposition and significantly downregulated the expression of TGF-β1 and downstream SMAD signaling components which were enhanced by Bev, ultimately remodeling primary extracellular matrix components. In conclusion, RASIs and Bev have synergistic effect in the treatment of colorectal cancer and RASIs might be an optimal choice for the treatment of Bev-induced HT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: