Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Chromosome 10q26-driven age-related macular degeneration is associated with reduced levels of HTRA1 in human retinal pigment epithelium.

  • Brandi L Williams‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Genome-wide association studies have identified the chromosome 10q26 (Chr10) locus, which contains the age-related maculopathy susceptibility 2 (ARMS2) and high temperature requirement A serine peptidase 1 (HTRA1) genes, as the strongest genetic risk factor for age-related macular degeneration (AMD) [L.G. Fritsche et al., Annu. Rev. Genomics Hum. Genet. 15, 151-171, (2014)]. To date, it has been difficult to assign causality to any specific single nucleotide polymorphism (SNP), haplotype, or gene within this region because of high linkage disequilibrium among the disease-associated variants [J. Jakobsdottir et al. Am. J. Hum. Genet. 77, 389-407 (2005); A. Rivera et al. Hum. Mol. Genet. 14, 3227-3236 (2005)]. Here, we show that HTRA1 messenger RNA (mRNA) is reduced in retinal pigment epithelium (RPE) but not in neural retina or choroid tissues derived from human donors with homozygous risk at the 10q26 locus. This tissue-specific decrease is mediated by the presence of a noncoding, cis-regulatory element overlapping the ARMS2 intron, which contains a potential Lhx2 transcription factor binding site that is disrupted by risk variant rs36212733. HtrA1 protein increases with age in the RPE-Bruch's membrane (BM) interface in Chr10 nonrisk donors but fails to increase in donors with homozygous risk at the 10q26 locus. We propose that HtrA1, an extracellular chaperone and serine protease, functions to maintain the optimal integrity of the RPE-BM interface during the aging process and that reduced expression of HTRA1 mRNA and protein in Chr10 risk donors impairs this protective function, leading to increased risk of AMD pathogenesis. HtrA1 augmentation, not inhibition, in high-risk patients should be considered as a potential therapy for AMD.


Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers.

  • G Stefano Brigidi‎ et al.
  • Cell‎
  • 2019‎

Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.


Transcription Elongation Can Affect Genome 3D Structure.

  • Sven Heinz‎ et al.
  • Cell‎
  • 2018‎

How transcription affects genome 3D organization is not well understood. We found that during influenza A (IAV) infection, rampant transcription rapidly reorganizes host cell chromatin interactions. These changes occur at the ends of highly transcribed genes, where global inhibition of transcription termination by IAV NS1 protein causes readthrough transcription for hundreds of kilobases. In these readthrough regions, elongating RNA polymerase II disrupts chromatin interactions by inducing cohesin displacement from CTCF sites, leading to locus decompaction. Readthrough transcription into heterochromatin regions switches them from the inert (B) to the permissive (A) chromatin compartment and enables transcription factor binding. Data from non-viral transcription stimuli show that transcription similarly affects cohesin-mediated chromatin contacts within gene bodies. Conversely, inhibition of transcription elongation allows cohesin to accumulate at previously transcribed intragenic CTCF sites and to mediate chromatin looping and compaction. Our data indicate that transcription elongation by RNA polymerase II remodels genome 3D architecture.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: