Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Augmented concentrations of CX3CL1 are associated with interstitial lung disease in systemic sclerosis.

  • Anna-Maria Hoffmann-Vold‎ et al.
  • PloS one‎
  • 2018‎

Dysregulation of Fractalkine (CX3CL1) and its receptor CX3CR1 has been linked to the pathobiology of chronic inflammatory conditions. We explored CX3CL1 in systemic sclerosis (SSc) related progressive interstitial lung disease (ILD) and pulmonary hypertension (PH) in two different but complementary sources of biomaterial.


Histopathology of pulmonary fibrotic disorders.

  • Chi K Lai‎ et al.
  • Seminars in respiratory and critical care medicine‎
  • 2006‎

Interstitial lung diseases encompass a broad spectrum of disorders that vary greatly in their clinical presentation, natural history, pathology, pathogenesis, prognosis, and treatment. Their correct classification requires integration of clinical, radiological, and pathological findings. Although these disorders may be well defined, interpretation of lung biopsy findings is often difficult, with surprisingly significant interobserver variability. This article reviews the histopathology of the major interstitial lung diseases, including the idiopathic interstitial pneumonias and pulmonary fibrotic disorders associated with collagen vascular diseases and smoking. In addition, the differential diagnosis of each of these disorders is discussed.


Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway.

  • Weiguang Zhong‎ et al.
  • The EMBO journal‎
  • 2006‎

c-Myc (Myc) is highly expressed in developing embryos where it regulates body size by controlling proliferation but not cell size. However, Myc is also induced in many postmitotic tissues, including adult myocardium, in response to stress where the predominant form of growth is an increase in cell size (hypertrophy) and not number. The function of Myc induction in this setting is unproven. Therefore, to explore Myc's role in hypertrophic growth, we created mice where Myc can be inducibly inactivated, specifically in adult myocardium. Myc-deficient hearts demonstrated attenuated stress-induced hypertrophic growth, secondary to a reduction in cell growth of individual myocytes. To explore the dependence of Myc-induced cell growth on CycD2, we created bigenic mice where Myc can be selectively activated in CycD2-null adult myocardium. Myc-dependent hypertrophic growth and cell cycle reentry is blocked in CycD2-deficient hearts. However, in contrast to Myc-induced DNA synthesis, hypertrophic growth is independent of CycD2-induced Cdk2 activity. These data suggest that Myc is required for a normal hypertrophic response and that its growth-promoting effects are also mediated through a CycD2-dependent pathway.


Estrogen receptor signaling pathways in human non-small cell lung cancer.

  • Diana C Márquez-Garbán‎ et al.
  • Steroids‎
  • 2007‎

Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.


Intestinal Permeability and IgA Provoke Immune Vasculitis Linked to Cardiovascular Inflammation.

  • Magali Noval Rivas‎ et al.
  • Immunity‎
  • 2019‎

Recent experimental data and clinical, genetic, and transcriptome evidence from patients converge to suggest a key role of interleukin-1β (IL-1β) in the pathogenesis of Kawasaki disease (KD). However, the molecular mechanisms involved in the development of cardiovascular lesions during KD vasculitis are still unknown. Here, we investigated intestinal barrier function in KD vasculitis and observed evidence of intestinal permeability and elevated circulating secretory immunoglobulin A (sIgA) in KD patients, as well as elevated sIgA and IgA deposition in vascular tissues in a mouse model of KD vasculitis. Targeting intestinal permeability corrected gut permeability, prevented IgA deposition and ameliorated cardiovascular pathology in the mouse model. Using genetic and pharmacologic inhibition of IL-1β signaling, we demonstrate that IL-1β lies upstream of disrupted intestinal barrier function, subsequent IgA vasculitis development, and cardiac inflammation. Targeting mucosal barrier dysfunction and the IL-1β pathway may also be applicable to other IgA-related diseases, including IgA vasculitis and IgA nephropathy.


MicroRNA-223 Regulates the Development of Cardiovascular Lesions in LCWE-Induced Murine Kawasaki Disease Vasculitis by Repressing the NLRP3 Inflammasome.

  • Daisuke Maruyama‎ et al.
  • Frontiers in pediatrics‎
  • 2021‎

Kawasaki disease (KD), an acute febrile childhood illness and systemic vasculitis of unknown etiology, is the leading cause of acquired heart disease among children. Experimental data from murine models of KD vasculitis and transcriptomics data generated from whole blood of KD patients indicate the involvement of the NLRP3 inflammasome and interleukin-1 (IL-1) signaling in KD pathogenesis. MicroRNA-223 (miR-223) is a negative regulator of NLRP3 activity and IL-1β production, and its expression has been reported to be upregulated during acute human KD; however, the specific role of miR-223 during KD vasculitis remains unknown. Here, using the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, we demonstrate increased miR-223 expression in LCWE-induced cardiovascular lesions. Compared with control WT mice, LCWE-injected miR-223-deficient mice (miR223 -/y ) developed more severe coronary arteritis and aortitis, as well as more pronounced abdominal aorta aneurysms and dilations. The enhanced cardiovascular lesions and KD vasculitis observed in LCWE-injected miR223 -/y mice correlated with increased NLRP3 inflammasome activity and elevated IL-1β production, indicating that miR-223 limits cardiovascular lesion development by downmodulating NLRP3 inflammasome activity. Collectively, our data reveal a previously unappreciated role of miR-223 in regulating innate immune responses and in limiting KD vasculitis and its cardiovascular lesions by constraining the NLRP3 inflammasome and the IL-1β pathway. These data also suggest that miR-223 expression may be used as a marker for KD vasculitis pathogenesis and provide a novel therapeutic target.


Small-Conductance Calcium-Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells.

  • Thomas A Reher‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

Purkinje cells (PCs) are important in cardiac arrhythmogenesis. Whether small-conductance calcium-activated potassium (SK) channels are present in PCs remains unclear. We tested the hypotheses that subtype 2 SK (SK2) channel proteins and apamin-sensitive SK currents are abundantly present in PCs.


Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis.

  • Stefanie Marek-Iannucci‎ et al.
  • JCI insight‎
  • 2021‎

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Murine and human data suggest that the NLRP3-IL-1β pathway is the main driver of KD pathophysiology. NLRP3 can be activated during defective autophagy/mitophagy. We used the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis to examine the role of autophagy/mitophagy on cardiovascular lesion development. LCWE-injected mice had impaired autophagy/mitophagy and increased levels of ROS in cardiovascular lesions, together with increased systemic 8-OHdG release. Enhanced autophagic flux significantly reduced cardiovascular lesions in LCWE-injected mice, whereas autophagy blockade increased inflammation. Vascular smooth muscle cell-specific deletion of Atg16l1 and global Parkin-/- significantly increased disease formation, supporting the importance of autophagy/mitophagy in this model. Ogg1-/- mice had significantly increased lesions with increased NLRP3 activity, whereas treatment with MitoQ reduced vascular tissue inflammation, ROS production, and systemic 8-OHdG release. Treatment with MN58b or Metformin (increasing AMPK and reducing ROS) resulted in decreased cardiovascular lesions. Our results demonstrate that impaired autophagy/mitophagy and ROS-dependent damage exacerbate the development of murine KD vasculitis. This pathway can be efficiently targeted to reduce disease severity. These findings enhance our understanding of KD pathogenesis and identify potentially novel therapeutic avenues for KD treatment.


Platelets exacerbate cardiovascular inflammation in a murine model of Kawasaki disease vasculitis.

  • Begüm Kocatürk‎ et al.
  • JCI insight‎
  • 2023‎

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Increased platelet counts and activation are observed during the course of KD, and elevated platelet counts are associated with higher risks of developing intravenous immunoglobulin resistance and coronary artery aneurysms. However, the role of platelets in KD pathogenesis remains unclear. Here, we analyzed transcriptomics data generated from the whole blood of patients with KD and discovered changes in the expression of platelet-related genes during acute KD. In the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, LCWE injection increased platelet counts and the formation of monocyte-platelet aggregates (MPAs), upregulated the concentration of soluble P-selectin, and increased circulating thrombopoietin and interleukin 6 (IL-6). Furthermore, platelet counts correlated with the severity of cardiovascular inflammation. Genetic depletion of platelets (Mpl-/- mice) or treatment with an anti-CD42b antibody significantly reduced LCWE-induced cardiovascular lesions. Furthermore, in the mouse model, platelets promoted vascular inflammation via the formation of MPAs, which likely amplified IL-1B production. Altogether, our results indicate that platelet activation exacerbates the development of cardiovascular lesions in a murine model of KD vasculitis. These findings enhance our understanding of KD vasculitis pathogenesis and highlight MPAs, which are known to enhance IL-1B production, as a potential therapeutic target for this disorder.


The GSK3 Signaling Axis Regulates Adaptive Glutamine Metabolism in Lung Squamous Cell Carcinoma.

  • Milica Momcilovic‎ et al.
  • Cancer cell‎
  • 2018‎

Altered metabolism is a hallmark of cancer growth, forming the conceptual basis for development of metabolic therapies as cancer treatments. We performed in vivo metabolic profiling and molecular analysis of lung squamous cell carcinoma (SCC) to identify metabolic nodes for therapeutic targeting. Lung SCCs adapt to chronic mTOR inhibition and suppression of glycolysis through the GSK3α/β signaling pathway, which upregulates glutaminolysis. Phospho-GSK3α/β protein levels are predictive of response to single-therapy mTOR inhibition while combinatorial treatment with the glutaminase inhibitor CB-839 effectively overcomes therapy resistance. In addition, we identified a conserved metabolic signature in a broad spectrum of hypermetabolic human tumors that may be predictive of patient outcome and response to combined metabolic therapies targeting mTOR and glutaminase.


Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis.

  • Anaïs Briot‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Although much progress has been made in identifying the mechanisms that trigger endothelial activation and inflammatory cell recruitment during atherosclerosis, less is known about the intrinsic pathways that counteract these events. Here we identified NOTCH1 as an antagonist of endothelial cell (EC) activation. NOTCH1 was constitutively expressed by adult arterial endothelium, but levels were significantly reduced by high-fat diet. Furthermore, treatment of human aortic ECs (HAECs) with inflammatory lipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [Ox-PAPC]) and proinflammatory cytokines (TNF and IL1β) decreased Notch1 expression and signaling in vitro through a mechanism that requires STAT3 activation. Reduction of NOTCH1 in HAECs by siRNA, in the absence of inflammatory lipids or cytokines, increased inflammatory molecules and binding of monocytes. Conversely, some of the effects mediated by Ox-PAPC were reversed by increased NOTCH1 signaling, suggesting a link between lipid-mediated inflammation and Notch1. Interestingly, reduction of NOTCH1 by Ox-PAPC in HAECs was associated with a genetic variant previously correlated to high-density lipoprotein in a human genome-wide association study. Finally, endothelial Notch1 heterozygous mice showed higher diet-induced atherosclerosis. Based on these findings, we propose that reduction of endothelial NOTCH1 is a predisposing factor in the onset of vascular inflammation and initiation of atherosclerosis.


Interleukin-1 Beta-Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment.

  • Rebecca A Porritt‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2020‎

Kawasaki disease (KD) is the leading cause of acute vasculitis and acquired heart disease in children in developed countries. Notably, KD is more prevalent in males than females. We previously established a key role for IL (interleukin)-1 signaling in KD pathogenesis, but whether this pathway underlies the sex-based difference in susceptibility is unknown. Approach and Results: The role of IL-1 signaling was investigated in the Lactobacillus casei cell wall extract-induced experimental mouse model of KD vasculitis. Five-week-old male and female mice were injected intraperitoneally with PBS, Lactobacillus caseicell wall extract, or a combination of Lactobacillus caseicell wall extract and the IL-1 receptor antagonist Anakinra. Aortitis, coronary arteritis inflammation score and abdominal aorta dilatation, and aneurysm development were assessed. mRNA-seq (messenger RNA sequencing) analysis was performed on abdominal aorta tissue. Publicly available human transcriptomics data from patients with KD was analyzed to identify sex differences and disease-associated genes. Male mice displayed enhanced aortitis and coronary arteritis as well as increased incidence and severity of abdominal aorta dilatation and aneurysm, recapitulating the increased incidence in males that is observed in human KD. Gene expression data from patients with KD and abdominal aorta tissue of Lactobacillus caseicell wall extract-injected mice showed enhanced Il1b expression and IL-1 signaling genes in males. Although the more severe IL-1β-mediated disease phenotype observed in male mice was ameliorated by Anakinra treatment, the milder disease phenotype in female mice failed to respond.


Targeting IRE1 endoribonuclease activity alleviates cardiovascular lesions in a murine model of Kawasaki disease vasculitis.

  • Stefanie Marek-Iannucci‎ et al.
  • JCI insight‎
  • 2022‎

Kawasaki disease (KD) is the leading cause of noncongenital heart disease in children. Studies in mice and humans propound the NLRP3/IL-1β pathway as the principal driver of KD pathophysiology. Endoplasmic reticulum (ER) stress can activate the NLRP3 inflammasome, but the potential implication of ER stress in KD pathophysiology has not been investigated to our knowledge. We used human patient data and the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis to characterize the impact of ER stress on the development of cardiovascular lesions. KD patient transcriptomics and single-cell RNA sequencing of the abdominal aorta from LCWE-injected mice revealed changes in the expression of ER stress genes. Alleviating ER stress genetically, by conditional deletion of inositol-requiring enzyme 1 (IRE1) in myeloid cells, or pharmacologically, by inhibition of IRE1 endoribonuclease (RNase) activity, led to significant reduction of LCWE-induced cardiovascular lesion formation as well as reduced caspase-1 activity and IL-1β secretion. These results demonstrate the causal relationship of ER stress to KD pathogenesis and highlight IRE1 RNase activity as a potential new therapeutic target.


LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin.

  • David B Shackelford‎ et al.
  • Cancer cell‎
  • 2013‎

The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ∼20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations, showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors.


Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in Langendorff-perfused rabbit hearts.

  • Chung-Chuan Chou‎ et al.
  • The Journal of physiology‎
  • 2007‎

We hypothesize that remodelling of action potential and intracellular calcium (Ca(i)) dynamics in the peri-infarct zone contributes to ventricular arrhythmogenesis in the postmyocardial infarction setting. To test this hypothesis, we performed simultaneous optical mapping of Ca(i) and membrane potential (V(m)) in the left ventricle in 15 rabbit hearts with myocardial infarction for 1 week. Ventricular premature beats frequently originated from the peri-infarct zone, and 37% showed elevation of Ca(i) prior to V(m) depolarization, suggesting reverse excitation-contraction coupling as their aetiology. During electrically induced ventricular fibrillation, the highest dominant frequency was in the peri-infarct zone in 61 of 70 episodes. The site of highest dominant frequency had steeper action potential duration restitution and was more susceptible to pacing-induced Ca(i) alternans than sites remote from infarct. Wavebreaks during ventricular fibrillation tended to occur at sites of persistently elevated Ca(i). Infusion of propranolol flattened action potential duration restitution, reduced wavebreaks and converted ventricular fibrillation to ventricular tachycardia. We conclude that in the subacute phase of myocardial infarction, the peri-infarct zone exhibits regions with steep action potential duration restitution slope and unstable Ca(i) dynamics. These changes may promote ventricular extrasystoles and increase the incidence of wavebreaks during ventricular fibrillation. Whereas increased tissue heterogeneity after subacute myocardial infarction creates a highly arrhythmogenic substrate, dynamic action potential and Ca(i) cycling remodelling also contribute to the initiation and maintenance of ventricular fibrillation in this setting.


Cardiac Dysfunction in the BACHD Mouse Model of Huntington's Disease.

  • Analyne M Schroeder‎ et al.
  • PloS one‎
  • 2016‎

While Huntington's disease (HD) is classified as a neurological disorder, HD patients exhibit a high incidence of cardiovascular events leading to heart failure and death. In this study, we sought to better understand the cardiovascular phenotype of HD using the BACHD mouse model. The age-related decline in cardiovascular function was assessed by echocardiograms, electrocardiograms, histological and microarray analysis. We found that structural and functional differences between WT and BACHD hearts start at 3 months of age and continue throughout life. The aged BACHD mice develop cardiac fibrosis and ultimately apoptosis. The BACHD mice exhibited adaptive physiological changes to chronic isoproterenol treatment; however, the medication exacerbated fibrotic lesions in the heart. Gene expression analysis indicated a strong tilt toward apoptosis in the young mutant heart as well as changes in genes involved in cellular metabolism and proliferation. With age, the number of genes with altered expression increased with the large changes occurring in the cardiovascular disease, cellular metabolism, and cellular transport clusters. The BACHD model of HD exhibits a number of changes in cardiovascular function that start early in the disease progress and may provide an explanation for the higher cardiovascular risk in HD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: