Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Quantitatively assessing mekosuchine crocodile locomotion by geometric morphometric and finite element analysis of the forelimb.

  • Michael D Stein‎ et al.
  • PeerJ‎
  • 2020‎

Morphological shifts observed in the fossil record of a lineage potentially indicate concomitant shifts in ecology of that lineage. Mekosuchine crocodiles of Cenozoic Australia display departures from the typical eusuchian body-plan both in the cranium and postcranium. Previous qualitative studies have suggested that these crocodiles had a more terrestrial habitus than extant crocodylians, yet the capacity of mekosuchine locomotion remains to be tested. Limb bone shape, such as diaphyseal cross-section and curvature, has been related to habitual use and locomotory function across a wide variety of taxa. Available specimens of mekosuchine limbs, primarily humeri, are distinctly columnar compared with those of extant crocodylians. Here we apply a quantitative approach to biomechanics in mekosuchine taxa using both geomorphic morphometric and finite element methods to measure bone shape and estimate locomotory stresses in a comparative context. Our results show mekosuchines appear to diverge from extant semi-aquatic saltwater and freshwater crocodiles in cross-sectional geometry of the diaphysis and generate different structural stresses between models that simulate sprawling and high-walk gaits. The extant crocodylians display generally rounded cross-sectional diaphyseal outlines, which may provide preliminary indication of resistance to torsional loads that predominate during sprawling gait, whereas mekosuchine humeri appear to vary between a series of elliptical outlines. Mekosuchine structural stresses are comparatively lower than those of the extant crocodylians and reduce under high-walk gait in some instances. This appears to be a function of bending moments induced by differing configurations of diaphyseal curvature. Additionally, the neutral axis of structural stresses is differently oriented in mekosuchines. This suggests a shift in the focus of biomechanical optimisation, from torsional to axial loadings. Our results lend quantitative support to the terrestrial habitus hypothesis in so far as they suggest that mekosuchine humeri occupied a different morphospace than that associated with the semi-aquatic habit. The exact adaptational trajectory of mekosuchines, however, remains to be fully quantified. Novel forms appear to emerge among mekosuchines during the late Cenozoic. Their adaptational function is considered here; possible applications include navigation of uneven terrain and burrowing.


The identification of Oligo-Miocene mammalian palaeocommunities from the Riversleigh World Heritage Area, Australia and an appraisal of palaeoecological techniques.

  • Troy J Myers‎ et al.
  • PeerJ‎
  • 2017‎

Fourteen of the best sampled Oligo-Miocene local faunas from the Riversleigh World Heritage Area, north-western Queensland, Australia are analysed using classification and ordination techniques to identify potential mammalian palaeocommunities and palaeocommunity types. Abundance data for these faunas are used, for the first time, in conjunction with presence/absence data. An early Miocene Faunal Zone B and two middle Miocene Faunal Zone C palaeocommunities are recognised, as well as one palaeocommunity type. Change in palaeocommunity structure, between the early Miocene and middle Miocene, may be the result of significant climate change during the Miocene Carbon Isotope Excursion. The complexes of local faunas identified will allow researchers to use novel palaeocommunities in future analyses of Riversleigh's fossil faunas. The utility of some palaeoecological multivariate indices and techniques is examined. The Dice index is found to outperform other binary similarity/distance coefficients, while the UPGMA algorithm is more useful than neighbour joining. Evidence is equivocal for the usefulness of presence/absence data compared to abundance.


Sheath-tailed bats (Chiroptera: Emballonuridae) from the early Pleistocene Rackham's Roost Site, Riversleigh World Heritage Area, and the distribution of northern Australian emballonurid species.

  • Tyler R King‎ et al.
  • PeerJ‎
  • 2021‎

Sheath-tailed bats (Family Emballonuridae) from the early Pleistocene Rackham's Roost Site cave deposit in the Riversleigh World Heritage Area, north-western Queensland are the oldest recorded occurrence for the family in Australia. The fossil remains consist of maxillary and dentary fragments, as well as isolated teeth, but until now their precise identity has not been assessed. Our study indicates that at least three taxa are represented, and these are distinguished from other Australian emballonurids based on morphometric analysis of craniodental features. Most of the Rackham's Roost Site emballonurid remains are referrable to the modern species Taphozous georgianus Thomas, 1915, but the extant species T. troughtoni Tate, 1952 also appears to be present, as well as a very large, as-yet undetermined species of Saccolaimus Temminck, 1838. We identify craniodental features that clearly distinguish T. georgianus from the externally very similar T. troughtoni. Results suggest that the distributions of T. georgianus and T. troughtoni may have overlapped in north-western Queensland since at least the early Pleistocene.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: