Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,648 papers

Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin.

  • Ying Huang‎ et al.
  • Molecular brain‎
  • 2016‎

The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons.


Effect of SIRT1 Gene on Epithelial-Mesenchymal Transition of Human Prostate Cancer PC-3 Cells.

  • Ying Cui‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2016‎

BACKGROUND The epithelial-mesenchymal transition (EMT) has been shown to be involved in the process of invasion and metastasis of prostate cancer. SIRT1 is the mammalian homologue of the silent information regulator 2 (Sir2) gene, and is abnormally expressed in prostate cancer cells. Therefore, it is hypothesized that SIRT1 mediates the invasion/metastatic ability of prostate cancer via EMT regulation. This study thus investigated the effect of SIRT1 gene on the invasion and migration of prostate cancer cell line PC-3 via the small interference RNA (siRNA) against SIRT1. MATERIAL AND METHODS SiRNA construct was transfected into PC-3 cells, which were tested for the cell migration and invasion ability by scratch assay and Transwell migration assay, respectively. Expression levels of vimentin, E-cadherin, and N-cadherin were further quantified by Western blotting and RT-PCR. RESULTS Both mRNA and protein levels of SIRT1 were depressed after siRNA transfection, along with weakened migration and invasion ability of PC-3 cells. Elevated E-cadherin and suppressed N-cadherin and vimentin were observed in those transfected cells. CONCLUSIONS The silencing of SIRT1 gene in PC-3 cells can suppress the movement, migration, and invasion functions of prostate cancer cells, possibly via the down-regulation of mesenchymal markers vimentin and N-cadherin accompanied with up-regulation of epithelial marker N-cadherin, thus reversing the EMT process.


Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing.

  • Benjamin L Oakes‎ et al.
  • Nature communications‎
  • 2016‎

Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity.


Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline.

  • Amanda Cinquin‎ et al.
  • Developmental cell‎
  • 2015‎

Positional information derived from local morphogen concentration plays an important role in patterning. A key question is how morphogen diffusion and gene expression regulation shape positional information into an appropriate profile with suitably low noise. We address this question using a model system--the C. elegans germline--whose regulatory network has been well characterized genetically but whose spatiotemporal dynamics are poorly understood. We show that diffusion within the germline syncytium is a critical control of stem cell differentiation and that semi-permeable diffusion barriers present at key locations make it possible--in combination with a feedback loop in the germline regulatory network--for mitotic zone size to be robust against spatial noise in Notch signaling. Spatial averaging within compartments defined by diffusion barriers is an advantageous patterning strategy, which attenuates noise while still allowing for sharp transitions between compartments. This strategy could apply to other organs.


Snord116 is critical in the regulation of food intake and body weight.

  • Yue Qi‎ et al.
  • Scientific reports‎
  • 2016‎

Prader-Willi syndrome (PWS) is the predominant genetic cause of obesity in humans. Recent clinical reports have suggested that micro-deletion of the Snord116 gene cluster can lead to PWS, however, the extent of the contributions of the encoded snoRNAs is unknown. Here we show that mice lacking Snord116 globally have low birth weight, increased body weight gain, energy expenditure and hyperphagia. Consistent with this, microarray analysis of hypothalamic gene expression revealed a significant alteration in feeding related pathways that was also confirmed by in situ hybridisation. Importantly, selective deletion of Snord116 only from NPY expressing neurons mimics almost exactly the global deletion phenotype including the persistent low birth weight, increased body weight gain in early adulthood, increased energy expenditure and hyperphagia. Mechanistically, the lack of Snord116 in NPY neurons leads to the upregulation of NPY mRNA consistent with the hyperphagic phenotype and suggests a critical role of Snord116 in the control of NPY neuronal functions that might be dysregulated in PWS.


Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus × domestica).

  • Yue Ma‎ et al.
  • Scientific reports‎
  • 2016‎

The plant height is an important trait in fruit tree. However, the molecular mechanism on dwarfism is still poorly understood. We found that colchicine-induced autotetraploid apple plants (Malus × domestica) exhibited a dwarf phenotype. The vertical length of cortical parenchyma cells was shorter in autotetraploids than in diploids, by observing paraffin sections. Hormone levels of indoleacetic acid (IAA) and brassinosteroid (BR) were significantly decreased in 3- and 5-year-old autotetraploid plants. Digital gene expression (DGE) analysis showed that the differentially expressed genes were mainly involved in IAA and BR pathways. microRNA390 was significantly upregulated according to microarray analysis. Exogenous application of IAA and BR promoted stem elongation of both apple plants grown in medium. The results show that dwarfing in autotetraploid apple plants is most likely regulated by IAA and BR. The dwarf phenotype of autotetraploid apple plants could be due to accumulation of miR390 after genome doubling, leading to upregulation of apple trans-acting short-interfering RNA 3 (MdTAS3) expression, which in turn downregulates the expression of MdARF3. Overall, this leads to partial interruption of the IAA and BR signal transduction pathway. Our study provides important insights into the molecular mechanisms underlying dwarfism in autopolyploid apple plants.


MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin.

  • Juan Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3'-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer.


Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy.

  • Lei Zhang‎ et al.
  • Journal of translational medicine‎
  • 2016‎

Trimetazidine, as an anti-ischemic and antioxidant agent, has been demonstrated to have many cardioprotective effects. However, whether early administration of trimetazidine has an effect on diabetic cardiomyopathy and the mechanisms underlying the effect have not yet been elucidated.


Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo.

  • Zeng Li‎ et al.
  • Oncotarget‎
  • 2016‎

The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans.


Plasma metabonomics study of first-Episode schizophrenia treated with olanzapine in female patients.

  • Ying Qiao‎ et al.
  • Neuroscience letters‎
  • 2016‎

Schizophrenia is a persistent chronic mental illness with an unknown pathogenic mechanism; no empirical laboratory-based tests are available to support the diagnosis of schizophrenia or to identify biomarkers correlated with the therapeutic effect of olanzapine. For this study, 15 female first-episode, drug-naïve patients with schizophrenia and 15 healthy female volunteers were recruited. Tests for blood glucose and lipids were conducted at baseline and after 4 weeks of treatment with olanzapine. UPLC-MS based metabonomic analysis was performed on both case and control groups to identify biomarkers of schizophrenia at baseline and to explore which biomarkers correlated with the therapeutic effect of olanzapine after a 4-week treatment. Compared with the control group, the case group showed significant changes in plasma metabolites. Thirteen distinct metabolites were identified. Among all the therapeutically effective cases, levels of these metabolites appeared to shift towards the normal trend; 8 of the identified 13 metabolites changed dramatically. The metabolites that we found are potential biomarkers for the diagnosis and treatment of schizophrenia.


Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector.

  • Jing Xu‎ et al.
  • Clinical science (London, England : 1979)‎
  • 2016‎

Renal tubule cells can recover after they undergo AKI (acute kidney injury). An incomplete repair of renal tubules can result in progressive fibrotic CKD (chronic kidney disease). Studies have revealed the relationship between tubular epithelial cells and kidney fibrogenesis. However, the underlying mechanism remains unclear. Hippo pathway components were evaluated in complete/incomplete repair of I/R (ischaemia/reperfusion) AKI rat models, HK-2 cells and AKI human renal biopsy samples. We found that the expression levels of the Hippo pathway components changed dynamically during kidney regeneration and fibrogenesis in rat models of I/R-induced AKI and human renal biopsy samples. The transcription cofactor YAP (Yes-associated protein) might be a key effector of renal regeneration and fibrogenesis. Our results showed further that YAP might elicit both beneficial and detrimental effects on I/R AKI. After I/R injury occurred, YAP could promote the repair of the injured epithelia. The constant YAP increase and activation might be related to interstitial fibrosis and abnormal renal tubule differentiation. These results indicate that the proper modulation of the Hippo pathway, specifically the transcription cofactor YAP, during repair might be a potent therapeutic target in AKI-CKD transition after I/R injury.


Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing.

  • Shixuan Chen‎ et al.
  • Scientific reports‎
  • 2015‎

The purpose of this study was to permit bone marrow mesenchymal stem cells (BMSCs) to reach their full potential in the treatment of chronic wounds. A biocompatible multifunctional crosslinker based temperature sensitive hydrogel was developed to deliver BMSCs, which improve the chronic inflammation microenvironments of wounds. A detailed in vitro investigation found that the hydrogel is suitable for BMSC encapsulation and can promote BMSC secretion of TGF-β1 and bFGF. In vivo, full-thickness skin defects were made on the backs of db/db mice to mimic diabetic ulcers. It was revealed that the hydrogel can inhibit pro-inflammatory M1 macrophage expression. After hydrogel association with BMSCs treated the wound, significantly greater wound contraction was observed in the hydrogel + BMSCs group. Histology and immunohistochemistry results confirmed that this treatment contributed to the rapid healing of diabetic skin wounds by promoting granulation tissue formation, angiogenesis, extracellular matrix secretion, wound contraction, and re-epithelialization. These results show that a hydrogel laden with BMSCs may be a promising therapeutic strategy for the management of diabetic ulcers.


Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices.

  • Emma J Davies‎ et al.
  • Scientific reports‎
  • 2015‎

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.


Celecoxib reverts oxaliplatin-induced neuropathic pain through inhibiting PI3K/Akt2 pathway in the mouse dorsal root ganglion.

  • Shu-Ping Jiang‎ et al.
  • Experimental neurology‎
  • 2016‎

Oxaliplatin (OXA) is the common and extremely potent anti-advanced colorectal cancer chemotherapeutic. Accumulating evidence reveals that OXA evokes mechanical and cold hypersensitivity. However, the mechanism underlying these bothersome and dose-limiting adverse effects is poorly understood. It is well known that cyclooxygenase-2 (COX-2) as well as phosphoinositide 3-kinase (PI3K)/Akt signaling mediate the neuropathic pain. But it is still unclear whether COX-2 or PI3K/Akt signaling participates in the regulation of OXA-induced hypersensitivity, as well as the linkage between COX-2 and PI3K/Akt signaling in mediating OXA-induced hypersensitivity. In this paper, we investigated the anti-nociceptive effect of celecoxib, an inhibitor of COX-2, on the OXA-induced neuropathic pain. We found that OXA increased the expression of cyclooxygenase-2 (COX-2) and Akt2 in the lumbar 4-5 (L4-5) dorsal root ganglion (DRG). And the administration of celecoxib alleviates the OXA-induced hypersensitivity and suppresses the COX-2 and PI3K/Akt2 signaling. Our findings showed that COX-2 and PI3K/Akt2 signaling in DRG contributed to the OXA-induced neuropathic pain. In addition, celecoxib enhanced the OXA-induced mortality of the human colon cancer cell line HCT-116. Thus, celecoxib might play a dual role in colorectal cancer treatment: alleviating OXA-induced neuropathic pain and facilitating the anti-tumor effects of OXA through their synergistic role.


Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway.

  • Lei Zhang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO‑8910 and HO‑8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin‑mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.


Variation of the default mode network with altered alertness levels induced by propofol.

  • Xiaoyuan Liu‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2015‎

The default mode network (DMN) is closely associated with the maintenance of alertness and cognitive functions. This study aimed to observe the changes in DMN induced by increasing doses of propofol and progressively deepening sedation.


Prevalence and care index of early childhood caries in mainland China: evidence from epidemiological surveys during 1987-2013.

  • Xiaonan Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Early childhood caries (ECC) is the most common chronic disease in young children. Its reported prevalence varies greatly across China. This systematic review aimed to explore the epidemiological characteristics of ECC in mainland China from 1987 to 2013. In total, 102 articles were included. The pooled national prevalence and care index (ft/dmft%) for ECC were 65.5% and 3.6%, respectively. The overall ECC prevalence declined from 77.9% during 1987-1994 to 56.4% during 2010-2013. The pooled ECC prevalence for children aged 1-6 years was 0.3%, 17.3%, 40.2%, 54.4%, 66.1%, and 70.7%, respectively. There was no significant difference in prevalence between boys (59.1%) and girls (58.9%); and the care index was also similar (8.1% versus 7.7%). Slightly higher ECC prevalence was observed in rural areas (63.5%) compared with urban areas (59.5%) (RR = 1.08, 95% CI: 1.02-1.14); but a much higher care index was reported in urban children (6.0%) than their rural counterparts (1.6%) (RR = 3.68, 95% CI: 2.54-5.35). The 2006-2013 map of ECC prevalence among 5-year-olds showed wide geographic variations across China. Four adjacent provinces, including Sichuan, Chongqing, Hubei, and Shaanxi, constituted the areas with the lowest ECC prevalence in mainland China.


Abnormal Subcortical Brain Morphology in Patients with Knee Osteoarthritis: A Cross-sectional Study.

  • Cui Ping Mao‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Despite the involvement of subcortical brain structures in the pathogenesis of chronic pain and persistent pain as the defining symptom of knee osteoarthritis (KOA), little attention has been paid to the morphometric measurements of these subcortical nuclei in patients with KOA. The purpose of this study is to explore the potential morphological abnormalities of subcortical brain structures in patients with KOA as compared to the healthy control subjects by using high-resolution MRI. Structural MR data were acquired from 26 patients with KOA and 31 demographically similar healthy individuals. The MR data were analyzed by using FMRIB's integrated registration and segmentation tool. Both volumetric analysis and surface-based shape analysis were performed to characterize the subcortical morphology. The normalized volumes of bilateral caudate nucleus were significantly smaller in the KOA group than in the control group (P = 0.004). There was also a trend toward smaller volume of the hippocampus in KOA as compared to the control group (P = 0.027). Detailed surface analyses further localized these differences with a greater involvement of the left hemisphere (P < 0.05, corrected) for the caudate nucleus. Hemispheric asymmetry (right larger than left) of the caudate nucleus was found in both KOA and control groups. Besides, no significant correlation was found between the structural data and pain intensities. Our results indicated that patients with KOA had statistically significant smaller normalized volumes of bilateral caudate nucleus and a trend toward smaller volume of the hippocampus as compared to the control subjects. Further investigations are necessary to characterize the role of caudate nucleus in the course of chronicity of pain associated with KOA.


Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5.

  • Pengjuan Gong‎ et al.
  • Virology‎
  • 2016‎

Due to the worldwide prevalence of antibiotic resistant strains, phages therapy has been revitalized recently. In this study, an Enterococcus faecium phage named IME-EFm5 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that IME-EFm5 belong to the Siphoviridae family, and has a double-stranded genome of 42,265bp (with a 35.51% G+C content) which contains 70 putative coding sequences. LysEFm5, the endolysin of IME-EFm5, contains an amidase domain in its N-terminal and has a wider bactericidal spectrum than its parental phage IME-EFm5, including 7 strains of vancomycin-resistant E. faecium. The mutagenesis analysis revealed that the zinc ion binding residues (H27, H132, and C140), E90, and T138 are required for the catalysis of LysEFm5. However, the antibacterial activity of LysEFm5 is zinc ion independent, which is inconsistent with most of other amidase members. The phage lysin LysEFm5 might be an alternative treatment strategy for infections caused by multidrug-resistant E. faecium.


Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study.

  • Guang-Hui Pan‎ et al.
  • Oncotarget‎
  • 2016‎

Calcineurin inhibitors, including tacrolimus, are largely responsible for advances in allotransplantation. However, the nephrotoxicity associated with these immunosuppressants impairs patients' long-term survival after renal allograft. Therefore, novel regimens that minimize or even eliminate calcineurin inhibitors could improve transplantation outcomes. In this pilot study, we investigated the use of low-dose tacrolimus in combination with mesenchymal stem cells (MSCs), which are immunosuppressive and prolong allograft survival in experimental organ transplant models. Donor-derived, bone marrow MSCs combined with a sparing dose of tacrolimus (0.04-0.05 mg/kg/day) were administered to 16 de novo living-related kidney transplant recipients; 16 other patients received a standard dose of tacrolimus (0.07-0.08 mg/kg/day). The safety of MSC infusion, acute rejection, graft function, graft survival, and patient survival were evaluated over ≥24 months following kidney transplantation. All patients survived and had stable renal function at the 24 month follow-up. The combination of low-dose tacrolimus and MSCs was as effective as standard dose tacrolimus in maintaining graft survival at least 2 years after transplantation. In addition, both groups had similar urea, urine protein, urinary RBC, urinary WBC, 24-h urine protein, and creatinine clearance rates from 7 days to 24 months after transplantation. Furthermore, no differences in the proportion of lymphocytes, CD19, CD3, CD34, CD38, and natural killer cells were detected between the control and experimental groups. None of the MSC recipients experienced immediate or long-term toxicity from the treatment. This preliminary data suggests that the addition of MSCs permits the use of lower dosages of nephrotoxic calcineurin inhibitors following renal transplantation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: