Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The conforming brain and deontological resolve.

  • Melanie Pincus‎ et al.
  • PloS one‎
  • 2014‎

Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.


Obesogenic diet-associated C-reactive protein predicts reduced central dopamine and corticostriatal functional connectivity in female rhesus monkeys.

  • Jodi R Godfrey‎ et al.
  • Brain, behavior, and immunity‎
  • 2020‎

Alterations in dopamine (DA) signaling and reductions in functional connectivity (FC; a measure of temporal correlations of activity between different brain regions) within dopaminergic reward pathways are implicated in the etiology of psychopathology and have been associated with increased concentrations of inflammatory markers, including C-reactive protein. Peripheral and central inflammatory cytokines that have been shown to disrupt DA signaling and corticostriatal FC are associated with C-reactive protein, an acute phase reactant that is used translationally as a marker of systemic inflammation. One factor that can significantly increase systemic inflammation to produce neuroadaptations in reward pathways is a diet that results in fat mass accumulation (e.g. obesogenic diet). The current study in female rhesus monkeys maintained in a standard laboratory chow (n = 18) or on obesogenic diet (n = 16) for 12-months tested the hypothesis that an obesogenic diet would alter central DA and homovanillic acid (HVA) concentrations, and be associated with increased CRP concentrations and decreased FC between corticostriatal regions at 12-months following dietary intervention. We specifically assessed FC between the nucleus accumbens (NAcc) and two sub-regions of the prefrontal cortex (PFC) previously associated with CRP concentrations, the ventromedial PFC (vmPFC) and the orbitofrontal cortex (OFC), which are also involved in emotional and motivational salience assessment, and in goal-directed behavior, impulse control and the salience/value of food, respectively. Results showed that CSF DA concentrations were decreased (p = 0.002), HVA:DA ratios were increased (p = 0.016), and body mass index was increased (p = 0.047) over the 12-months of consuming an obesogenic diet. At 12-months, females maintained in the obesogenic diet exhibited higher CRP concentrations than females consuming chow-only (p = 0.008). Linear regression analyses revealed significant CRP by dietary condition interactions on DA concentrations (β = -5.10; p = 0.017) and HVA:DA ratios (β = 5.14; p = 0.029). Higher CRP concentrations were associated with lower CSF DA concentrations (r = -0.69; p = 0.004) and greater HVA:DA ratios only in females maintained in the obesogenic dietary condition (r = 0.58; p = 0.024). Resting-state magnetic resonance neuroimaging (rs-fMRI) in a subset of females from each diet condition (n = 8) at 12-months showed that higher CRP concentrations were associated decreased FC between the NAcc and subregions of the prefrontal cortex (PFC; p's < 0.05). Decreased FC between the NAcc and PFC subregions were also associated with lower concentrations of DA and greater HVA:DA ratios (p's < 0.05). Overall, these data suggest that increased inflammatory signaling driving heightened CRP levels may mediate the adverse consequences of obesogenic diets on DA neurochemistry and corticostriatal connectivity.


Chronic psychosocial stress and experimental pubertal delay affect socioemotional behavior and amygdala functional connectivity in adolescent female rhesus macaques.

  • Melanie Pincus‎ et al.
  • Psychoneuroendocrinology‎
  • 2021‎

In females, pubertal onset appears to signal the opening of a window of increased vulnerability to the effects of stress on neurobehavioral development. What is the impact of pubertal timing on this process? We assessed the effects of pubertal timing and stress on behavior and amygdala functional connectivity (FC) in adolescent female macaques, whose social hierarchy provides an ethologically valid model of chronic psychosocial stress. Monkeys experienced puberty spontaneously (n = 34) or pubertal delay via Lupron treatment from age 16-33 months (n = 36). We examined the effects of stress (continuous dimension spanning dominant/low-stress to subordinate/high-stress) and experimental pubertal delay (Lupron-treated vs. Control) on socioemotional behavior and FC at 43-46 months, after all animals had begun puberty. Regardless of treatment, subordinate monkeys were more submissive and less affiliative, and exhibited weaker FC between amygdala and dorsolateral prefrontal cortex and stronger FC between amygdala and temporal pole. Regardless of social rank, Lupron-treated monkeys were also more submissive and less affiliative but were less anxious and exhibited less displacement behavior in a "Human Intruder" task than untreated monkeys; they exhibited stronger FC between amygdala and orbitofrontal cortex. No interactions between rank and Lupron treatment were observed. These similar behavioral outcomes may reflect the common factor of delayed puberty - whether this is stress-related (untreated subordinate animals) or pharmacologically-induced (treated animals). In the brain, however, delayed puberty and subordination stress had separable effects, suggesting that the overlapping socioemotional outcomes may be mediated by distinct neuroplastic mechanisms. To gain further insights, additional longitudinal studies are required.


Diet matters: Glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys.

  • Jodi R Godfrey‎ et al.
  • Psychoneuroendocrinology‎
  • 2018‎

Exposure to psychosocial stressors increases consumption of palatable, calorically dense diets (CDD) and the risk for obesity, especially in females. While consumption of an obesogenic diet and chronic stress have both been shown to decrease dopamine 2 receptor (D2R) binding and alter functional connectivity (FC) within the prefrontal cortex (PFC) and the nucleus accumbens (NAcc), it remains uncertain how social experience and dietary environment interact to affect reward pathways critical for the regulation of motivated behavior. Using positron emission tomography (PET) and resting state functional connectivity magnetic resonance neuroimaging (rs-fMRI), in female rhesus monkeys maintained in a low calorie chow (n = 18) or a dietary choice condition (chow and a CDD; n = 16) for 12 months, the current study tested the overarching hypothesis that the adverse social experience resulting from subordinate social status would interact with consumption of an obesogenic diet to increase caloric intake that would be predicted by greater cortisol, lower prefrontal D2R binding potential (D2R-BP) and lower PFC-NAcc FC. Results showed that the consequences of adverse social experience imposed by chronic social subordination vary significantly depending on the dietary environment and are associated with alterations in prefrontal D2R-BP and FC in NAcc-PFC sub-regions that predict differences in caloric intake, body weight gain, and fat accumulation. Higher levels of cortisol in the chow-only condition were associated with mild inappetence, as well as increased orbitofrontal (OFC) D2R-BP and greater FC between the NAcc and the dorsolateral PFC (dlPFC) and ventromedial PFC (vmPFC). However, increased cortisol release in females in the dietary choice condition was associated with reduced prefrontal D2R-BP, and opposite FC between the NAcc and the vmPFC and dlPFC observed in the chow-only females. Importantly, the degree of these glucocorticoid-related neuroadaptations predicted significantly more total calorie intake as well as more consumption of the CDD for females having a dietary choice, but had no relation to calorie intake in the chow-only condition. Overall, the current findings suggest that dietary environment modifies the consequences of adverse social experience on reward pathways and appetite regulation and, in an obesogenic dietary environment, may reflect impaired cognitive control of food intake.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: