Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

  • Sean M O'Rourke‎ et al.
  • PloS one‎
  • 2011‎

To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.


Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1.

  • Amy A Connolly‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions--ASPM-1 recruitment to the spindle and microtubule severing--both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity.


Dynein modifiers in C. elegans: light chains suppress conditional heavy chain mutants.

  • Sean M O'Rourke‎ et al.
  • PLoS genetics‎
  • 2007‎

Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis.


Microtubule assembly and pole coalescence: early steps in Caenorhabditiselegans oocyte meiosis I spindle assembly.

  • Chien-Hui Chuang‎ et al.
  • Biology open‎
  • 2020‎

How oocytes assemble bipolar meiotic spindles in the absence of centrosomes as microtubule organizing centers remains poorly understood. We have used live cell imaging in Caenorhabditis elegans to investigate requirements for the nuclear lamina and for conserved regulators of microtubule dynamics during oocyte meiosis I spindle assembly, assessing these requirements with respect to recently identified spindle assembly steps. We show that the nuclear lamina is required for microtubule bundles to form a peripheral cage-like structure that appears shortly after oocyte nuclear envelope breakdown and surrounds the oocyte chromosomes, although bipolar spindles still assembled in its absence. Although two conserved regulators of microtubule nucleation, RAN-1 and γ-tubulin, are not required for bipolar spindle assembly, both contribute to normal levels of spindle-associated microtubules and spindle assembly dynamics. Finally, the XMAP215 ortholog ZYG-9 and the nearly identical minus-end directed kinesins KLP-15/16 are required for proper assembly of the early cage-like structure of microtubule bundles, and for early spindle pole foci to coalesce into a bipolar structure. Our results provide a framework for assigning molecular mechanisms to recently described steps in C. elegans oocyte meiosis I spindle assembly.


Cortical microtubules oppose actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion.

  • Alyssa R Quiogue‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.


Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis.

  • Claudio Asencio‎ et al.
  • Cell‎
  • 2012‎

Mitosis in metazoa requires nuclear envelope (NE) disassembly and reassembly. NE disassembly is driven by multiple phosphorylation events. Mitotic phosphorylation of the protein BAF reduces its affinity for chromatin and the LEM family of inner nuclear membrane proteins; loss of this BAF-mediated chromatin-NE link contributes to NE disassembly. BAF must reassociate with chromatin and LEM proteins at mitotic exit to reform the NE; however, how its dephosphorylation is regulated is unknown. Here, we show that the C. elegans protein LEM-4L and its human ortholog Lem4 (also called ANKLE2) are both required for BAF dephosphorylation. They act in part by inhibiting BAF's mitotic kinase, VRK-1, in vivo and in vitro. In addition, Lem4/LEM-4L interacts with PP2A and is required for it to dephosphorylate BAF during mitotic exit. By coordinating VRK-1- and PP2A-mediated signaling on BAF, Lem4/LEM-4L controls postmitotic NE formation in a function conserved from worms to humans.


C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues.

  • Dimple R Bosu‎ et al.
  • Developmental biology‎
  • 2010‎

Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCF(LIN-23) target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCF(LIN-23) complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.


MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes.

  • Calvin A Mok‎ et al.
  • Genetics‎
  • 2017‎

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.


MOM-5 frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions.

  • Nancy C Hawkins‎ et al.
  • Developmental biology‎
  • 2005‎

Asymmetric cell divisions produce all 302 neurons of the C. elegans hermaphrodite. Here, we describe a role for a C. elegans Dishevelled homolog, DSH-2, in an asymmetric neuroblast division. In dsh-2 mutants, neurons normally descended from the anterior neuroblast daughter of the ABpl/rpppa blast cell were frequently duplicated, while non-neuronal cells produced by the posterior daughter cell were often missing. These observations indicate that in the absence of dsh-2 function, the posterior daughter cell was transformed into a second anterior-like cell. Loss of mom-5, a C. elegans frizzled homolog, produced a similar phenotype. We also show that the DSH-2 protein localized to the cell cortex in most cells of the embryo. In the absence of MOM-5/Fz, DSH-2 was localized to the cytoplasm, suggesting that MOM-5 regulates asymmetric cell division by controlling the localization of DSH-2. Although all neurons in C. elegans are produced by an invariant pattern of cell divisions, our results indicate that cell signaling may contribute to asymmetric neuroblast division during embryogenesis.


C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion.

  • Aleesa J Schlientz‎ et al.
  • PLoS genetics‎
  • 2020‎

The requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants. In contrast, oocytes with similarly severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 both negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and influences the dynamics of the central spindle-associated proteins Aurora B/AIR-2 and MgcRacGAP/CYK-4. We suggest that proper regulation by CLS-2 of both oocyte cortical stiffness and central spindle protein dynamics may influence contractile ring assembly during polar body extrusion in C. elegans oocytes.


High-Throughput Cloning of Temperature-Sensitive Caenorhabditis elegans Mutants with Adult Syncytial Germline Membrane Architecture Defects.

  • Josh Lowry‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

The adult Caenorhabditis elegans hermaphrodite gonad consists of two mirror-symmetric U-shaped arms, with germline nuclei located peripherally in the distal regions of each arm. The nuclei are housed within membrane cubicles that are open to the center, forming a syncytium with a shared cytoplasmic core called the rachis. As the distal germline nuclei progress through meiotic prophase, they move proximally and eventually cellularize as their compartments grow in size. The development and maintenance of this complex and dynamic germline membrane architecture are relatively unexplored, and we have used a forward genetic screen to identify 20 temperature-sensitive mutations in 19 essential genes that cause defects in the germline membrane architecture. Using a combined genome-wide SNP mapping and whole genome sequencing strategy, we have identified the causal mutations in 10 of these mutants. Four of the genes we have identified are conserved, with orthologs known to be involved in membrane biology, and are required for proper development or maintenance of the adult germline membrane architecture. This work provides a starting point for further investigation of the mechanisms that control the dynamics of syncytial membrane architecture during adult oogenesis.


A genetic screen for temperature-sensitive morphogenesis-defective Caenorhabditis elegans mutants.

  • Molly C Jud‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

Morphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


C. elegans XMAP215/ZYG-9 and TACC/TAC-1 act at multiple times during oocyte meiotic spindle assembly and promote both spindle pole coalescence and stability.

  • Austin M Harvey‎ et al.
  • PLoS genetics‎
  • 2023‎

The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.


Interactions between the WEE-1.3 kinase and the PAM-1 aminopeptidase in oocyte maturation and the early C. elegans embryo.

  • Dorothy Benton‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

Puromycin-sensitive aminopeptidases are found across phyla and are known to regulate the cell-cycle and play a protective role in neurodegenerative disease. PAM-1 is a puromycin-sensitive aminopeptidase important for meiotic exit and polarity establishment in the one-cell Caenorhabditis elegans embryo. Despite conservation of this aminopeptidase, little is known about its targets during development. In order to identify novel interactors, we conducted a suppressor screen and isolated four suppressing mutations in three genes that partially rescued the maternal-effect lethality of pam-1 mutants. Suppressed strains show improved embryonic viability and polarization of the anterior-posterior axis. We identified a missense mutation in wee-1.3 in one of these suppressed strains. WEE-1.3 is an inhibitory kinase that regulates maturation promoting factor. Although the missense mutation suppressed polarity phenotypes in pam-1, it does so without restoring centrosome-cortical contact or altering the cortical actomyosin cytoskeleton. To see if PAM-1 and WEE-1.3 interact in other processes, we examined oocyte maturation. Although depletion of wee-1.3 causes sterility due to precocious oocyte maturation, this effect was lessened in pam-1 worms, suggesting that PAM-1 and WEE-1.3 interact in this process. Levels of WEE-1.3 were comparable between wild-type and pam-1 strains, suggesting that WEE-1.3 is not a direct target of the aminopeptidase. Thus, we have established an interaction between PAM-1 and WEE-1.3 in multiple developmental processes and have identified suppressors that are likely to further our understanding of the role of puromycin-sensitive aminopeptidases during development.


KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly.

  • Amy A Connolly‎ et al.
  • The Journal of cell biology‎
  • 2015‎

During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere-associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(-) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(-) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore-microtubule (k-MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(-) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k-MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.


Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans.

  • Lionel Pintard‎ et al.
  • Current biology : CB‎
  • 2003‎

SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo.


Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation.

  • Kenji Sugioka‎ et al.
  • eLife‎
  • 2017‎

The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly.


Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows.

  • Kenji Sugioka‎ et al.
  • Developmental cell‎
  • 2018‎

Cell division axes during development are specified in different orientations to establish multicellular assemblies, but the mechanisms that generate division axis diversity remain unclear. We show here that patterns of cell contact provide cues that diversify cell division orientation by modulating cortical non-muscle myosin flow. We reconstituted in vivo contact patterns using beads or isolated cells to show two findings. First, we identified three contact-dependent cues that pattern cell division orientation and myosin flow: physical contact, contact asymmetry, and a Wnt signal. Second, we experimentally demonstrated that myosin flow generates forces that trigger plasma membrane movements and propose that their anisotropy drives cell division orientation. Our data suggest that contact-dependent control of myosin specifies the division axes of Caenorhabditis elegans AB, ABa, EMS cells, and the mouse AB cell. The contact pattern-dependent generation of myosin flows, in concert with known microtubule/dynein pathways, may greatly expand division axis diversity during development.


A semi-dominant mutation in the general splicing factor SF3a66 causes anterior-posterior axis reversal in one-cell stage C. elegans embryos.

  • Mohammad R Keikhaee‎ et al.
  • PloS one‎
  • 2014‎

Establishment of anterior-posterior polarity in one-cell stage Caenorhabditis elegans embryos depends in part on astral microtubules. As the zygote enters mitosis, these microtubules promote the establishment of a posterior pole by binding to and protecting a cytoplasmic pool of the posterior polarity protein PAR-2 from phosphorylation by the cortically localized anterior polarity protein PKC-3. Prior to activation of the sperm aster, the oocyte Meiosis I and II spindles assemble and function, usually at the future anterior pole, but these meiotic spindle microtubules fail to establish posterior polarity through PAR-2. Here we show that a semi-dominant mutation in the general splicing factor SF3a66 can lead to a reversed axis of AP polarity that depends on PAR-2 and possibly on close proximity of oocyte meiotic spindles with the cell cortex. One possible explanation is that reduced levels of PKC-3, due to a general splicing defect, can result in axis reversal due to a failure to prevent oocyte meiotic spindle microtubules from interfering with AP axis formation.


E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis.

  • Zhuo Du‎ et al.
  • Developmental biology‎
  • 2015‎

Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin-RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we propose that ubiquitin-mediated protein degradation, like many transcription factors, function broadly as regulators driving developmental progression during embryogenesis in C. elegans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: