Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Deletion of a Yci1 Domain Protein of Candida albicans Allows Homothallic Mating in MTL Heterozygous Cells.

  • Yuan Sun‎ et al.
  • mBio‎
  • 2016‎

It has been proposed that the ancestral fungus was mating competent and homothallic. However, many mating-competent fungi were initially classified as asexual because their mating capacity was hidden behind layers of regulation. For efficient in vitro mating, the essentially obligate diploid ascomycete pathogen Candida albicans has to change its mating type locus from heterozygous MTLa/α to homozygous MTLa/a or MTLα/α and then undergo an environmentally controlled epigenetic switch to the mating-competent opaque form. These requirements greatly reduce the potential for C. albicans mating. Deletion of the Yci1 domain gene OFR1 bypasses the need for C. albicans cells to change the mating type locus from heterozygous to homozygous prior to switching to the opaque form and mating and allows homothallic mating of MTL heterozygous strains. This bypass is carbon source dependent and does not occur when cells are grown on glucose. Transcriptional profiling of ofr1 mutant cells shows that in addition to regulating cell type and mating circuitry, Ofr1 is needed for proper regulation of histone and chitin biosynthesis gene expression. It appears that OFR1 is a key regulator in C. albicans and functions in part to maintain the cryptic mating phenotype of the pathogen.


Genetic and phenotypic intra-species variation in Candida albicans.

  • Matthew P Hirakawa‎ et al.
  • Genome research‎
  • 2015‎

Candida albicans is a commensal fungus of the human gastrointestinal tract and a prevalent opportunistic pathogen. To examine diversity within this species, extensive genomic and phenotypic analyses were performed on 21 clinical C. albicans isolates. Genomic variation was evident in the form of polymorphisms, copy number variations, chromosomal inversions, subtelomeric hypervariation, loss of heterozygosity (LOH), and whole or partial chromosome aneuploidies. All 21 strains were diploid, although karyotypic changes were present in eight of the 21 isolates, with multiple strains being trisomic for Chromosome 4 or Chromosome 7. Aneuploid strains exhibited a general fitness defect relative to euploid strains when grown under replete conditions. All strains were also heterozygous, yet multiple, distinct LOH tracts were present in each isolate. Higher overall levels of genome heterozygosity correlated with faster growth rates, consistent with increased overall fitness. Genes with the highest rates of amino acid substitutions included many cell wall proteins, implicating fast evolving changes in cell adhesion and host interactions. One clinical isolate, P94015, presented several striking properties including a novel cellular phenotype, an inability to filament, drug resistance, and decreased virulence. Several of these properties were shown to be due to a homozygous nonsense mutation in the EFG1 gene. Furthermore, loss of EFG1 function resulted in increased fitness of P94015 in a commensal model of infection. Our analysis therefore reveals intra-species genetic and phenotypic differences in C. albicans and delineates a natural mutation that alters the balance between commensalism and pathogenicity.


Candida albicans white and opaque cells undergo distinct programs of filamentous growth.

  • Haoyu Si‎ et al.
  • PLoS pathogens‎
  • 2013‎

The ability to switch between yeast and filamentous forms is central to Candida albicans biology. The yeast-hyphal transition is implicated in adherence, tissue invasion, biofilm formation, phagocyte escape, and pathogenesis. A second form of morphological plasticity in C. albicans involves epigenetic switching between white and opaque forms, and these two states exhibit marked differences in their ability to undergo filamentation. In particular, filamentous growth in white cells occurs in response to a number of environmental conditions, including serum, high temperature, neutral pH, and nutrient starvation, whereas none of these stimuli induce opaque filamentation. Significantly, however, we demonstrate that opaque cells can undergo efficient filamentation but do so in response to distinct environmental cues from those that elicit filamentous growth in white cells. Growth of opaque cells in several environments, including low phosphate medium and sorbitol medium, induced extensive filamentous growth, while white cells did not form filaments under these conditions. Furthermore, while white cell filamentation is often enhanced at elevated temperatures such as 37°C, opaque cell filamentation was optimal at 25°C and was inhibited by higher temperatures. Genetic dissection of the opaque filamentation pathway revealed overlapping regulation with the filamentous program in white cells, including key roles for the transcription factors EFG1, UME6, NRG1 and RFG1. Gene expression profiles of filamentous white and opaque cells were also compared and revealed only limited overlap between these programs, although UME6 was induced in both white and opaque cells consistent with its role as master regulator of filamentation. Taken together, these studies establish that a program of filamentation exists in opaque cells. Furthermore, this program regulates a distinct set of genes and is under different environmental controls from those operating in white cells.


A 'parameiosis' drives depolyploidization and homologous recombination in Candida albicans.

  • Matthew Z Anderson‎ et al.
  • Nature communications‎
  • 2019‎

Meiosis is a conserved tenet of sexual reproduction in eukaryotes, yet this program is seemingly absent from many extant species. In the human fungal pathogen Candida albicans, mating of diploid cells generates tetraploid products that return to the diploid state via a non-meiotic process of depolyploidization known as concerted chromosome loss (CCL). Here, we report that recombination rates are more than three orders of magnitude higher during CCL than during normal mitotic growth. Furthermore, two conserved 'meiosis-specific' factors play central roles in CCL as SPO11 mediates DNA double-strand break formation while both SPO11 and REC8 regulate chromosome stability and promote inter-homolog recombination. Unexpectedly, SPO11 also promotes DNA repair and recombination during normal mitotic divisions. These results indicate that C. albicans CCL represents a 'parameiosis' that blurs the conventional boundaries between mitosis and meiosis. They also reveal parallels with depolyploidization in mammalian cells and provide potential insights into the evolution of meiosis.


The 'obligate diploid' Candida albicans forms mating-competent haploids.

  • Meleah A Hickman‎ et al.
  • Nature‎
  • 2013‎

Candida albicans, the most prevalent human fungal pathogen, is considered to be an obligate diploid that carries recessive lethal mutations throughout the genome. Here we demonstrate that C. albicans has a viable haploid state that can be derived from diploid cells under in vitro and in vivo conditions, and that seems to arise through a concerted chromosome loss mechanism. Haploids undergo morphogenetic changes like those of diploids, including the yeast-hyphal transition, chlamydospore formation and a white-opaque switch that facilitates mating. Haploid opaque cells of opposite mating type mate efficiently to regenerate the diploid form, restoring heterozygosity and fitness. Homozygous diploids arise spontaneously by auto-diploidization, and both haploids and auto-diploids show a similar reduction in fitness, in vitro and in vivo, relative to heterozygous diploids, indicating that homozygous cell types are transient in mixed populations. Finally, we constructed stable haploid strains with multiple auxotrophies that will facilitate molecular and genetic analyses of this important pathogen.


Phenothiazines Rapidly Induce Laccase Expression and Lignin-Degrading Properties in the White-Rot Fungus Phlebia radiata.

  • Matthew P Hirakawa‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.


Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism.

  • Shen-Huan Liang‎ et al.
  • Cell host & microbe‎
  • 2019‎

Candida albicans is a commensal fungus of human gastrointestinal and reproductive tracts, but also causes life-threatening systemic infections. The balance between colonization and pathogenesis is associated with phenotypic plasticity, with alternative cell states producing different outcomes in a mammalian host. Here, we reveal that gene dosage of a master transcription factor regulates cell differentiation in diploid C. albicans cells, as EFG1 hemizygous cells undergo a phenotypic transition inaccessible to "wild-type" cells with two functional EFG1 alleles. Notably, clinical isolates are often EFG1 hemizygous and thus licensed to undergo this transition. Phenotypic change corresponds to high-frequency loss of the functional EFG1 allele via de novo mutation or gene conversion events. This phenomenon also occurs during passaging in the gastrointestinal tract with the resulting cell type being hypercompetitive for commensal and systemic infections. A "two-hit" genetic model therefore underlies a key phenotypic transition in C. albicans that enables adaptation to host niches.


Adaptation to the dietary sugar D-tagatose via genome instability in polyploid Candida albicans cells.

  • Gregory J Thomson‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2021‎

The opportunistic fungal pathogen Candida albicans undergoes an unusual parasexual cycle wherein diploid cells mate to form tetraploid cells that can generate genetically diverse progeny via a nonmeiotic program of chromosome loss. The genetic diversity afforded by parasex impacts clinically relevant features including drug resistance and virulence, and yet the factors influencing genome instability in C. albicans are not well defined. To understand how environmental cues impact genome instability, we monitored ploidy change following tetraploid cell growth in a panel of different carbon sources. We found that growth in one carbon source, D-tagatose, led to high levels of genomic instability and chromosome loss in tetraploid cells. This sugar is a stereoisomer of L-sorbose which was previously shown to promote karyotypic changes in C. albicans. However, while expression of the SOU1 gene enabled utilization of L-sorbose, overexpression of this gene did not promote growth in D-tagatose, indicating differences in assimilation of the two sugars. In addition, genome sequencing of multiple progenies recovered from D-tagatose cultures revealed increased relative copy numbers of chromosome 4, suggestive of chromosome-level regulation of D-tagatose metabolism. Together, these studies identify a novel environmental cue that induces genome instability in C. albicans, and further implicate chromosomal changes in supporting metabolic adaptation in this species.


Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen.

  • Iuliana V Ene‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Candida albicans is a heterozygous diploid yeast that is a commensal of the human gastrointestinal tract and a prevalent opportunistic pathogen. Here, whole-genome sequencing was performed on multiple C. albicans isolates passaged both in vitro and in vivo to characterize the complete spectrum of mutations arising in laboratory culture and in the mammalian host. We establish that, independent of culture niche, microevolution is primarily driven by de novo base substitutions and frequent short-tract loss-of-heterozygosity events. An average base-substitution rate of ∼1.2 × 10-10 per base pair per generation was observed in vitro, with higher rates inferred during host infection. Large-scale chromosomal changes were relatively rare, although chromosome 7 trisomies frequently emerged during passaging in a gastrointestinal model and was associated with increased fitness for this niche. Multiple chromosomal features impacted mutational patterns, with mutation rates elevated in repetitive regions, subtelomeric regions, and in gene families encoding cell surface proteins involved in host adhesion. Strikingly, de novo mutation rates were more than 800-fold higher in regions immediately adjacent to emergent loss-of-heterozygosity tracts, indicative of recombination-induced mutagenesis. Furthermore, genomes showed biased patterns of mutations suggestive of extensive purifying selection during passaging. These results reveal how both cell-intrinsic and cell-extrinsic factors influence C. albicans microevolution, and provide a quantitative picture of genome dynamics in this heterozygous diploid species.


Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties.

  • Matthew P Hirakawa‎ et al.
  • iScience‎
  • 2022‎

Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge.


Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

  • Kari D Hagen‎ et al.
  • PLoS neglected tropical diseases‎
  • 2011‎

Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.


MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation.

  • Allison M Porman‎ et al.
  • PLoS genetics‎
  • 2013‎

Phenotypic switching allows for rapid transitions between alternative cell states and is important in pathogenic fungi for colonization and infection of different host niches. In Candida albicans, the white-opaque phenotypic switch plays a central role in regulating the program of sexual mating as well as interactions with the mammalian host. White-opaque switching is controlled by genes encoded at the MTL (mating-type-like) locus that ensures that only a or α cells can switch from the white state to the mating-competent opaque state, while a/α cells are refractory to switching. Here, we show that the related pathogen C. tropicalis undergoes white-opaque switching in all three cell types (a, α, and a/α), and thus switching is independent of MTL control. We also demonstrate that C. tropicalis white cells are themselves mating-competent, albeit at a lower efficiency than opaque cells. Transcriptional profiling of C. tropicalis white and opaque cells reveals significant overlap between switch-regulated genes in MTL homozygous and MTL heterozygous cells, although twice as many genes are white-opaque regulated in a/α cells as in a cells. In C. albicans, the transcription factor Wor1 is the master regulator of the white-opaque switch, and we show that Wor1 also regulates switching in C. tropicalis; deletion of WOR1 locks a, α, and a/α cells in the white state, while WOR1 overexpression induces these cells to adopt the opaque state. Furthermore, we show that WOR1 overexpression promotes both filamentous growth and biofilm formation in C. tropicalis, independent of the white-opaque switch. These results demonstrate an expanded role for C. tropicalis Wor1, including the regulation of processes necessary for infection of the mammalian host. We discuss these findings in light of the ancestral role of Wor1 as a transcriptional regulator of the transition between yeast form and filamentous growth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: