Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy.

  • Matthew C Pahl‎ et al.
  • Current biology : CB‎
  • 2019‎

Most neurogenesis occurs during development, driven by the cell divisions of neural stem cells (NSCs). We use Drosophila to understand how neurogenesis terminates once development is complete, a process critical for neural circuit formation. We identified E93, a steroid-hormone-induced transcription factor that downregulates phosphatidylinositol 3-kinase (PI3K) levels to activate autophagy for elimination of mushroom body (MB) neuroblasts. MB neuroblasts are a subset of Drosophila NSCs that generate neurons important for memory and learning. MB neurogenesis extends into adulthood when E93 is reduced and terminates prematurely when E93 is overexpressed. E93 is expressed in MB neuroblasts during later stages of pupal development only, which includes the time when MB neuroblasts normally terminate their divisions. Cell intrinsic Imp and Syp temporal factors regulate timing of E93 expression in MB neuroblasts, and extrinsic steroid hormone receptor (EcR) activation boosts E93 levels high for termination. Imp inhibits premature expression of E93 in a Syp-dependent manner, and Syp positively regulates E93 to promote neurogenesis termination. Imp and Syp together with E93 form a temporal cassette, which consequently links early developmental neurogenesis with termination. Altogether, E93 functions as a late-acting temporal factor integrating extrinsic hormonal cues linked to developmental timing with neuroblast intrinsic temporal cues to precisely time neurogenesis ending during development.


MicroRNA expression signature in human abdominal aortic aneurysms.

  • Matthew C Pahl‎ et al.
  • BMC medical genomics‎
  • 2012‎

Abdominal aortic aneurysm (AAA) is a dilatation of the aorta affecting most frequently elderly men. Histologically AAAs are characterized by inflammation, vascular smooth muscle cell apoptosis, and extracellular matrix degradation. The mechanisms of AAA formation, progression, and rupture are currently poorly understood. A previous mRNA expression study revealed a large number of differentially expressed genes between AAA and non-aneurysmal control aortas. MicroRNAs (miRNAs), small non-coding RNAs that are post-transcriptional regulators of gene expression, could provide a mechanism for the differential expression of genes in AAA.


Biological constraints on GWAS SNPs at suggestive significance thresholds reveal additional BMI loci.

  • Reza K Hammond‎ et al.
  • eLife‎
  • 2021‎

To uncover novel significant association signals (p<5×10-8), genome-wide association studies (GWAS) requires increasingly larger sample sizes to overcome statistical correction for multiple testing. As an alternative, we aimed to identify associations among suggestive signals (5 × 10-8≤p<5×10-4) in increasingly powered GWAS efforts using chromatin accessibility and direct contact with gene promoters as biological constraints. We conducted retrospective analyses of three GIANT BMI GWAS efforts using ATAC-seq and promoter-focused Capture C data from human adipocytes and embryonic stem cell (ESC)-derived hypothalamic-like neurons. This approach, with its extremely low false-positive rate, identified 15 loci at p<5×10-5 in the 2010 GWAS, of which 13 achieved genome-wide significance by 2018, including at NAV1, MTIF3, and ADCY3. Eighty percent of constrained 2015 loci achieved genome-wide significance in 2018. We observed similar results in waist-to-hip ratio analyses. In conclusion, biological constraints on sub-significant GWAS signals can reveal potentially true-positive loci for further investigation in existing data sets without increasing sample size.


CRISPR-Cas9-Mediated Genome Editing Confirms EPDR1 as an Effector Gene at the BMD GWAS-Implicated 'STARD3NL' Locus.

  • James A Pippin‎ et al.
  • JBMR plus‎
  • 2021‎

Genome-wide-association studies (GWASs) have discovered genetic signals robustly associated with BMD, but typically not the precise localization of effector genes. By intersecting genome-wide promoter-focused Capture C and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data generated in human mesenchymal progenitor cell (hMSC)-derived osteoblasts, consistent contacts were previously predicted between the EPDR1 promoter and multiple BMD-associated candidate causal variants at the 'STARD3NL' locus. RNAi knockdown of EPDR1 expression in hMSC-derived osteoblasts was shown to lead to inhibition of osteoblastogenesis. To fully characterize the physical connection between these putative noncoding causal variants at this locus and the EPDR1 gene, clustered regularly interspaced short-palindromic repeat Cas9 endonuclease (CRISPR-Cas9) genome editing was conducted in hFOB1.19 cells across the single open-chromatin region harboring candidates for the underlying causal variant, rs1524068, rs6975644, and rs940347, all in close proximity to each other. RT-qPCR and immunoblotting revealed dramatic and consistent downregulation of EPDR1 specifically in the edited differentiated osteoblast cells. Consistent with EPDR1 expression changes, alkaline phosphatase staining was also markedly reduced in the edited differentiated cells. Collectively, CRISPR-Cas9 genome editing in the hFOB1.19 cell model supports previous observations, where this regulatory region harboring GWAS-implicated variation operates through direct long-distance physical contact, further implicating a key role for EPDR1 in osteoblastogenesis and BMD determination. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.


Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2.

  • Sheridan H Littleton‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.


Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual.

  • Diana L Cousminer‎ et al.
  • Genome biology‎
  • 2021‎

Bone accrual impacts lifelong skeletal health, but genetic discovery has been primarily limited to cross-sectional study designs and hampered by uncertainty about target effector genes. Here, we capture this dynamic phenotype by modeling longitudinal bone accrual across 11,000 bone scans in a cohort of healthy children and adolescents, followed by genome-wide association studies (GWAS) and variant-to-gene mapping with functional follow-up.


3D genomic features across >50 diverse cell types reveal insights into the genomic architecture of childhood obesity.

  • Khanh B Trang‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated.


Variant to gene mapping for carpal tunnel syndrome risk loci implicates skeletal muscle regulatory elements.

  • Matthew C Pahl‎ et al.
  • EBioMedicine‎
  • 2024‎

Carpal tunnel syndrome (CTS) is a common disorder caused by compression of the median nerve in the wrist, resulting in pain and numbness throughout the hand and forearm. While multiple behavioural and physiological factors influence CTS risk, a growing body of evidence supports a strong genetic contribution. Recent genome-wide association study (GWAS) efforts have reported 53 independent signals associated with CTS. While GWAS can identify genetic loci conferring risk, it does not determine which cell types drive the genetic aetiology of the trait, which variants are "causal" at a given signal, and which effector genes correspond to these non-coding variants. These obstacles limit interpretation of potential disease mechanisms.


Transcriptional (ChIP-Chip) Analysis of ELF1, ETS2, RUNX1 and STAT5 in Human Abdominal Aortic Aneurysm.

  • Matthew C Pahl‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

We investigated transcriptional control of gene expression in human abdominal aortic aneurysm (AAA). We previously identified 3274 differentially expressed genes in human AAA tissue compared to non-aneurysmal controls. Four expressed transcription factors (ELF1, ETS2, STAT5 and RUNX1) were selected for genome-wide chromatin immunoprecipitation. Transcription factor binding was enriched in 4760 distinct genes (FDR < 0.05), of which 713 were differentially expressed in AAA. Functional classification using Gene Ontology (GO), KEGG, and Network Analysis revealed enrichment in several biological processes including "leukocyte migration" (FDR = 3.09 × 10-05) and "intracellular protein kinase cascade" (FDR = 6.48 × 10-05). In the control aorta, the most significant GO categories differed from those in the AAA samples and included "cytoskeleton organization" (FDR = 1.24 × 10-06) and "small GTPase mediated signal transduction" (FDR = 1.24 × 10-06). Genes up-regulated in AAA tissue showed a highly significant enrichment for GO categories "leukocyte migration" (FDR = 1.62 × 10-11), "activation of immune response" (FDR = 8.44 × 10-11), "T cell activation" (FDR = 4.14 × 10-10) and "regulation of lymphocyte activation" (FDR = 2.45 × 10-09), whereas the down-regulated genes were enriched in GO categories "cytoskeleton organization" (FDR = 7.84 × 10-05), "muscle cell development" (FDR = 1.00 × 10-04), and "organ morphogenesis" (FDR = 3.00 × 10-04). Quantitative PCR assays confirmed a sub-set of the transcription factor binding sites including those in MTMR11, DUSP10, ITGAM, MARCH1, HDAC8, MMP14, MAGI1, THBD and SPOCK1.


3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk.

  • Chun Su‎ et al.
  • Cell metabolism‎
  • 2022‎

Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.


Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep.

  • Justin Palermo‎ et al.
  • Science advances‎
  • 2023‎

Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.


Perturbation of the insomnia WDR90 GWAS locus pinpoints rs3752495 as a causal variant influencing distal expression of neighboring gene, PIG-Q.

  • Shilpa Sonti‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Although genome wide association studies (GWAS) have been crucial for the identification of loci associated with sleep traits and disorders, the method itself does not directly uncover the underlying causal variants and corresponding effector genes. The overwhelming majority of such variants reside in non-coding regions and are therefore presumed to impact the activity of cis-regulatory elements, such as enhancers. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' locus. However, importantly that effort did not characterize the corresponding underlying causal variant at this GWAS signal. Specifically, our genome-wide ATAC-seq and high-resolution promoter-focused Capture C datasets generated in this cell setting brought our attention to a shortlist of three tightly neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium in a candidate intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. The objective of this study was to investigate the influence of the proxy SNPs collectively and then individually on PIG-Q modulation and to pinpoint the causal "regulatory" variant among the three SNPs. Starting at a gross level perturbation, deletion of the entire region harboring all three SNPs in human iPSC-derived neural progenitor cells via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from more refined individual luciferase reporter assays for each of the three SNPs in iPSCs revealed that the intronic region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression (n=10). Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold compared to the non-risk allele. In conclusion, our variant-to-function approach and subsequent in vitro validation implicates rs3752495 as a causal insomnia risk variant embedded at the WDR90-PIG-Q locus.


Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits.

  • Chiara Lasconi‎ et al.
  • Sleep‎
  • 2022‎

We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and β-cells, given that both sleep disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and β-cells, intersecting public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established human beta-cell line (EndoC-βH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-βH1cells running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep-but not morningness-were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-βH1 and α-cells were enriched for insomnia loci (p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10-7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-βH1 and 76 putative effector genes in α-cells, with these genes showing significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.


Variant-to-Gene-Mapping Analyses Reveal a Role for the Hypothalamus in Genetic Susceptibility to Inflammatory Bowel Disease.

  • Chiara Lasconi‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD.


Genome-wide association studies and fine-mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American cohorts.

  • Chaojie Yang‎ et al.
  • Communications biology‎
  • 2023‎

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: