Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities.

  • Michela Serresi‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

Kras-driven non-small-cell lung cancers (NSCLCs) are a leading cause of death with limited therapeutic options. Many NSCLCs exhibit high levels of Ezh2, the enzymatic subunit of polycomb repressive complex 2 (PRC2). We tested Ezh2 inhibitors as single agents or before chemotherapy in mice with orthotopic Kras-driven NSCLC grafts, which homogeneously express Ezh2. These tumors display sensitivity to EZH2 inhibition by GSK126 but also amplify an inflammatory program involving signaling through NF-κB and genes residing in PRC2-regulated chromatin. During this process, tumor cells overcome GSK126 antiproliferative effects. We identified oncogenes that may mediate progression through an in vivo RNAi screen aimed at targets of PRC2/NF-κB. An in vitro compound screening linked GSK126-driven inflammation and therapeutic vulnerability in human cells to regulation of RNA synthesis and proteostasis. Interestingly, GSK126-treated NSCLCs in vivo also showed an enhanced response to a combination of nimesulide and bortezomib. Thus, Ezh2 inhibition may restrict cell proliferation and promote defined adaptive responses. Targeting these responses potentially improves outcomes in Kras-driven NSCLCs.


Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

  • Gaetano Ivan Dellino‎ et al.
  • Genome research‎
  • 2013‎

We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.


AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets.

  • Alessandro Gardini‎ et al.
  • PLoS genetics‎
  • 2008‎

A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.


Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation.

  • Alessandro Gardini‎ et al.
  • The EMBO journal‎
  • 2014‎

Breast and ovarian cancer susceptibility genes BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood results in increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high-throughput sequencing in breast epithelial cells. We found an intimate association between BRCA1 and PALB2 chromatin residence and genes displaying high transcriptional activity. Moreover, our experiments revealed a critical role for BRCA1 and, to a smaller degree, PALB2 in transcriptional responsiveness to NF-κB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for BRCA1 and PALB2 in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity. Taken together, our results highlight an important role for these breast cancer proteins in the regulation of diverse growth regulatory pathways.


G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition.

  • Geoffroy Laumet‎ et al.
  • Nature neuroscience‎
  • 2015‎

Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K(+) channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. We found that nerve injury increased dimethylation of Lys9 on histone H3 (H3K9me2) at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect levels of DNA methylation on these genes in DRGs. Nerve injury increased activity of euchromatic histone-lysine N-methyltransferase-2 (G9a), histone deacetylases and enhancer of zeste homolog-2 (EZH2), but only G9a inhibition consistently restored K(+) channel expression. Selective knockout of the gene encoding G9a in DRG neurons completely blocked K(+) channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced genes associated with K(+) channels but also normalized 638 genes down- or upregulated by nerve injury. Thus G9a has a dominant function in transcriptional repression of K(+) channels and in acute-to-chronic pain transition after nerve injury.


NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation.

  • Gaetano Gargiulo‎ et al.
  • Developmental cell‎
  • 2009‎

It is well established that epigenetic modulation of genome accessibility in chromatin occurs during biological processes. Here we describe a method based on restriction enzymes and next-generation sequencing for identifying accessible DNA elements using a small amount of starting material, and use it to examine myeloid differentiation of primary human CD34+ cells. The accessibility of several classes of cis-regulatory elements was a predictive marker of in vivo DNA binding by transcription factors, and was associated with distinct patterns of histone posttranslational modifications. We also mapped large chromosomal domains with differential accessibility in progenitors and maturing cells. Accessibility became restricted during differentiation, correlating with a decreased number of expressed genes and loss of regulatory potential. Our data suggest that a permissive chromatin structure in multipotent cells is progressively and selectively closed during differentiation, and illustrate the use of our method for the identification of functional cis-regulatory elements.


CSL362 potently and specifically depletes pDCs invitro and ablates SLE-immune complex-induced IFN responses.

  • Katherine A Monaghan‎ et al.
  • iScience‎
  • 2023‎

Systemic lupus erythematosus (SLE) is an autoimmune disease with significant morbidity and mortality. Type I interferon (IFN) drives SLE pathology and plasmacytoid dendritic cells (pDCs) are potent producers of IFN; however, the specific effects of pDC depletion have not been demonstrated. We show CD123 was highly expressed on pDCs and the anti-CD123 antibody CSL362 potently depleted pDCs in vitro. CSL362 pre-treatment abrogated the induction of IFNα and IFN-induced gene transcription following stimulation with SLE patient-derived serum or immune complexes. RNA transcripts induced in pDCs by ex vivo stimulation with TLR ligands were reflected in gene expression profiles of SLE blood, and correlated with disease severity. TLR ligand-induced protein production by SLE patient peripheral mononuclear cells was abrogated by CSL362 pre-treatment including proteins over expressed in SLE patient serum. These findings implicate pDCs as key drivers in the cellular activation and production of soluble factors seen in SLE.


Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain.

  • Bryant M Schultz‎ et al.
  • Nucleic acids research‎
  • 2015‎

The imprinted Kcnq1 domain contains a differentially methylated region (KvDMR) in intron 11 of Kcnq1. The Kcnq1ot1 non-coding RNA emerges from the unmethylated paternal KvDMR in antisense direction, resulting in cis-repression of neighboring genes. The KvDMR encompasses the Kcnq1ot1 promoter, CTCF sites and other DNA elements, whose individual contribution to regulation of the endogenous domain is unknown. We find that paternal inheritance of a deletion of the minimal Kcnq1ot1 promoter derepresses the upstream Cdkn1c gene. Surprisingly, Kcnq1ot1 transcripts continue to emerge from alternative sites, evidence that silencing depends, not on the ncRNA, but on the promoter sequence. Detailed analyses of Kcnq1ot during cardiogenesis show substantial chromatin reorganization coinciding with discontinuous RNA production in both wild-type and mutant mice, with loss of imprinting. We show that CTCF binds to both methylated and unmethylated alleles of the KvDMR. Furthermore, we report a multitude of enhancers within the Kcnq1ot1 region, and present conformational dynamics of a novel heart enhancer engaged in Kcnq1 expression. Our results have important implications on tissue-specific imprinting patterns and how transcriptional mechanisms compete to maximize the expression of vital genes, in addition to shifting our perception on the role of the long ncRNA in regulating this imprinted domain.


Polycomb Repressive Complex 2 Is a Barrier to KRAS-Driven Inflammation and Epithelial-Mesenchymal Transition in Non-Small-Cell Lung Cancer.

  • Michela Serresi‎ et al.
  • Cancer cell‎
  • 2016‎

Polycomb repressive complexes (PRC) are frequently implicated in human cancer, acting either as oncogenes or tumor suppressors. Here, we show that PRC2 is a critical regulator of KRAS-driven non-small cell lung cancer progression. Modulation of PRC2 by either Ezh2 overexpression or Eed deletion enhances KRAS-driven adenomagenesis and inflammation, respectively. Eed-loss-driven inflammation leads to massive macrophage recruitment and marked decline in tissue function. Additional Trp53 inactivation activates a cell-autonomous epithelial-to-mesenchymal transition program leading to an invasive mucinous adenocarcinoma. A switch between methylated/acetylated chromatin underlies the tumor phenotypic evolution, prominently involving genes controlled by Hippo/Wnt signaling. Our observations in the mouse models were conserved in human cells. Importantly, PRC2 inactivation results in context-dependent phenotypic alterations, with implications for its therapeutic application.


Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.

  • Fan Lai‎ et al.
  • Nature‎
  • 2013‎

Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms. Although the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X-chromosome inactivation and imprinting, different classes of lncRNAs may have varied biological functions. We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their neighbouring genes using a cis-mediated mechanism. To define the precise mode by which such enhancer-like RNAs function, we depleted factors with known roles in transcriptional activation and assessed their role in RNA-dependent activation. Here we report that depletion of the components of the co-activator complex, Mediator, specifically and potently diminished the ncRNA-induced activation of transcription in a heterologous reporter assay using human HEK293 cells. In vivo, Mediator is recruited to ncRNA-a target genes and regulates their expression. We show that ncRNA-a interact with Mediator to regulate its chromatin localization and kinase activity towards histone H3 serine 10. The Mediator complex harbouring disease- displays diminished ability to associate with activating ncRNAs. Chromosome conformation capture confirmed the presence of DNA looping between the ncRNA-a loci and its targets. Importantly, depletion of Mediator subunits or ncRNA-a reduced the chromatin looping between the two loci. Our results identify the human Mediator complex as the transducer of activating ncRNAs and highlight the importance of Mediator and activating ncRNA association in human disease.


Human mutations in integrator complex subunits link transcriptome integrity to brain development.

  • Renske Oegema‎ et al.
  • PLoS genetics‎
  • 2017‎

Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.


TEAD Inhibitors Sensitize KRASG12C Inhibitors via Dual Cell Cycle Arrest in KRASG12C-Mutant NSCLC.

  • Salvina Laura Tammaccaro‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

KRASG12C is one of the most common mutations detected in non-small cell lung cancer (NSCLC) patients, and it is a marker of poor prognosis. The first FDA-approved KRASG12C inhibitors, sotorasib and adagrasib, have been an enormous breakthrough for patients with KRASG12C mutant NSCLC; however, resistance to therapy is emerging. The transcriptional coactivators YAP1/TAZ and the family of transcription factors TEAD1-4 are the downstream effectors of the Hippo pathway and regulate essential cellular processes such as cell proliferation and cell survival. YAP1/TAZ-TEAD activity has further been implicated as a mechanism of resistance to targeted therapies. Here, we investigate the effect of combining TEAD inhibitors with KRASG12C inhibitors in KRASG12C mutant NSCLC tumor models. We show that TEAD inhibitors, while being inactive as single agents in KRASG12C-driven NSCLC cells, enhance KRASG12C inhibitor-mediated anti-tumor efficacy in vitro and in vivo. Mechanistically, the dual inhibition of KRASG12C and TEAD results in the downregulation of MYC and E2F signatures and in the alteration of the G2/M checkpoint, converging in an increase in G1 and a decrease in G2/M cell cycle phases. Our data suggest that the co-inhibition of KRASG12C and TEAD leads to a specific dual cell cycle arrest in KRASG12C NSCLC cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: