Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Label-free classification of cells based on supervised machine learning of subcellular structures.

  • Yusuke Ozaki‎ et al.
  • PloS one‎
  • 2019‎

It is demonstrated that cells can be classified by pattern recognition of the subcellular structure of non-stained live cells, and the pattern recognition was performed by machine learning. Human white blood cells and five types of cancer cell lines were imaged by quantitative phase microscopy, which provides morphological information without staining quantitatively in terms of optical thickness of cells. Subcellular features were then extracted from the obtained images as training data sets for the machine learning. The built classifier successfully classified WBCs from cell lines (area under ROC curve = 0.996). This label-free, non-cytotoxic cell classification based on the subcellular structure of QPM images has the potential to serve as an automated diagnosis of single cells.


Hepatocyte Growth Factor stimulated cell scattering requires ERK and Cdc42-dependent tight junction disassembly.

  • Akashi Togawa‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

The mechanism by which Hepatocyte Growth Factor (HGF) induces tight junction disassembly prior to cell scattering is largely unknown. Here, we show that HGF stimulates rapid loss of the TJ assembly protein Par6 from the TJ in an Erk-dependent manner. Erk activation by HGF is found to mediate the interaction of Par6 with GTP-loaded Cdc42. The Cdc42 GTPase activating protein cdGAP is shown to interact with Pkcζ at baseline and prevent Par6-Cdc42 association. Erk, by phosphorylating cdGAP at threonine776, can inhibit the GAP activity, thereby increasing Par6-Cdc42 association and TJ disassembly. Our findings reveal a novel pathway for regulating HGF signaling to the Par proteins through Erk-cdGAP, resulting in TJ disassembly and cell scattering.


SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence.

  • Yoshikazu Johmura‎ et al.
  • Nature communications‎
  • 2016‎

Recent evidence has revealed that senescence induction requires fine-tuned activation of p53, however, mechanisms underlying the regulation of p53 activity during senescence have not as yet been clearly established. We demonstrate here that SCF(Fbxo22)-KDM4A is a senescence-associated E3 ligase targeting methylated p53 for degradation. We find that Fbxo22 is highly expressed in senescent cells in a p53-dependent manner, and that SCF(Fbxo22) ubiquitylated p53 and formed a complex with a lysine demethylase, KDM4A. Ectopic expression of a catalytic mutant of KDM4A stabilizes p53 and enhances p53 interaction with PHF20 in the presence of Fbxo22. SCF(Fbxo22)-KDM4A is required for the induction of p16 and senescence-associated secretory phenotypes during the late phase of senescence. Fbxo22(-/-) mice are almost half the size of Fbxo22(+/-) mice owing to the accumulation of p53. These results indicate that SCF(Fbxo22)-KDM4A is an E3 ubiquitin ligase that targets methylated p53 and regulates key senescent processes.


Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair.

  • Hiroyuki Niida‎ et al.
  • Nature communications‎
  • 2017‎

HBO1, a histone acetyl transferase, is a co-activator of DNA pre-replication complex formation. We recently reported that HBO1 is phosphorylated by ATM and/or ATR and binds to DDB2 after ultraviolet irradiation. Here, we show that phosphorylated HBO1 at cyclobutane pyrimidine dimer (CPD) sites mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites. Furthermore, HBO1 facilitates accumulation of SNF2H and ACF1, an ATP-dependent chromatin remodelling complex, to CPD sites. Depletion of HBO1 inhibited repair of CPDs and sensitized cells to ultraviolet irradiation. However, depletion of HBO1 in cells derived from xeroderma pigmentosum patient complementation groups, XPE, XPC and XPA, did not lead to additional sensitivity towards ultraviolet irradiation. Our findings suggest that HBO1 acts in concert with SNF2H-ACF1 to make the chromosome structure more accessible to canonical nucleotide excision repair factors.


Inhibiting Skp2 E3 Ligase Suppresses Bleomycin-Induced Pulmonary Fibrosis.

  • Masashi Mikamo‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis and no curative therapies. SCF-Skp2 E3 ligase is a target for cancer therapy, but there have been no reports about Skp2 as a target for IPF. Here we demonstrate that Skp2 is a promising therapeutic target for IPF. We examined whether disrupting Skp2 suppressed pulmonary fibrosis in a bleomycin (BLM)-induced mouse model and found that pulmonary fibrosis was significantly suppressed in Skp2-deficient mice compared with controls. The pulmonary accumulation of fibrotic markers such as collagen type 1 and fibronectin in BLM-infused mice was decreased in Skp2-deficient mice. Moreover, the number of bronchoalveolar lavage fluid cells accompanied with pulmonary fibrosis was significantly diminished. Levels of the Skp2 target p27 were significantly decreased by BLM-administration in wild-type mice, but recovered in Skp2-/- mice. In vimentin-positive mesenchymal fibroblasts, the decrease of p27-positive cells and increase of Ki67-positive cells by BLM-administration was suppressed by Skp2-deficency. As these results suggested that inhibiting Skp2 might be effective for BLM-induced pulmonary fibrosis, we next performed a treatment experiment using the Skp2 inhibitor SZL-P1-41. As expected, BLM-induced pulmonary fibrosis was significantly inhibited by SZL-P1-41. Moreover, p27 levels were increased by the SZL-P1-41 treatment, suggesting p27 may be an important Skp2 target for BLM-induced pulmonary fibrosis. Our study suggests that Skp2 is a potential molecular target for human pulmonary fibrosis including IPF.


CCIVR facilitates comprehensive identification of cis-natural antisense transcripts with their structural characteristics and expression profiles.

  • Tatsuya Ohhata‎ et al.
  • Scientific reports‎
  • 2022‎

Cis-natural antisense transcripts (cis-NATs) are transcribed from the same genomic locus as their partner gene but from the opposite DNA strand and overlap with the partner gene transcript. Here, we developed a simple and convenient program termed CCIVR (comprehensive cis-NATs identifier via RNA-seq data) that comprehensively identifies all kinds of cis-NATs based on genome annotation with expression data obtained from RNA-seq. Using CCIVR with genome databases, we demonstrated total cis-NAT pairs from 11 model organisms. CCIVR analysis with RNA-seq data from parthenogenetic and androgenetic embryonic stem cells identified well-known imprinted cis-NAT pair, KCNQ1/KCNQ1OT1, ensuring the availability of CCIVR. Finally, CCIVR identified cis-NAT pairs that demonstrate inversely correlated expression upon TGFβ stimulation including cis-NATs that functionally repress their partner genes by introducing epigenetic alteration in the promoters of partner genes. Thus, CCIVR facilitates the investigation of structural characteristics and functions of cis-NATs in numerous processes in various species.


GSK3 regulates the expressions of human and mouse c-Myb via different mechanisms.

  • Kyoko Kitagawa‎ et al.
  • Cell division‎
  • 2010‎

c-Myb is expressed at high levels in immature progenitors of all the hematopoietic lineages. It is associated with the regulation of proliferation, differentiation and survival of erythroid, myeloid and lymphoid cells, but decreases during the terminal differentiation to mature blood cells. The cellular level of c-Myb is controlled by not only transcriptional regulation but also ubiquitin-dependent proteolysis. We recently reported that mouse c-Myb protein is controlled by ubiquitin-dependent degradation by SCF-Fbw7 E3 ligase via glycogen synthase kinase 3 (GSK3)-mediated phosphorylation of Thr-572 in a Cdc4 phosphodegron (CPD)-dependent manner. However, this critical threonine residue is not conserved in human c-Myb. In this study, we investigated whether GSK3 is involved in the regulatory mechanism for human c-Myb expression.


The amelioration of renal damage in Skp2-deficient mice canceled by p27 Kip1 deficiency in Skp2-/- p27-/- mice.

  • Sayuri Suzuki‎ et al.
  • PloS one‎
  • 2012‎

SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2(-/-) mice. However, it remains unclear whether the amelioration of renal injury in Skp2(-/-) mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2(-/-)p27(-/-) mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2(-/-) mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2(-/-)p27(-/-) mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2(-/-) mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2(-/-)p27(-/-) mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice.


Chromatin-remodeling factor BAZ1A/ACF1 targets UV damage sites in an MLL1-dependent manner to facilitate nucleotide excision repair.

  • Takafumi Koyauchi‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2022‎

Ultraviolet (UV) light irradiation generates pyrimidine dimers on DNA, such as cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts. Such dimers distort the high-order DNA structure and prevent transcription and replication. The nucleotide excision repair (NER) system contributes to resolving this type of DNA lesion. There are two pathways that recognize pyrimidine dimers. One acts on transcribed strands of DNA (transcription-coupled NER), and the other acts on the whole genome (global genome-NER; GG-NER). In the latter case, DNA damage-binding protein 2 (DDB2) senses pyrimidine dimers with several histone modification enzymes. We previously reported that histone acetyltransferase binding to ORC1 (HBO1) interacts with DDB2 and facilitates recruitment of the imitation switch chromatin remodeler at UV-irradiated sites via an unknown methyltransferase. Here, we found that the phosphorylated histone methyltransferase mixed lineage leukemia 1 (MLL1) was maintained at UV-irradiated sites in an HBO1-dependent manner. Furthermore, MLL1 catalyzed histone H3K4 methylation and recruited the chromatin remodeler bromodomain adjacent to zinc finger domain 1A (BAZ1A)/ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1). Depletion of MLL1 suppressed BAZ1A accumulation at UV-irradiated sites and inhibited the removal of CPDs. These data indicate that the DDB2-HBO1-MLL1 axis is essential for the recruitment of BAZ1A to facilitate GG-NER.


Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes.

  • Yuka Tamura‎ et al.
  • EMBO reports‎
  • 2021‎

The reactivation of X-linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X-linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist-inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X-linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X-linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.


Beta-catenin/Tcf-1-mediated transactivation of cyclin D1 promoter is negatively regulated by thyroid hormone.

  • Hiroko Natsume‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Cyclin D1 is an oncogenic cyclin frequently over-expressed in cancer. To examine the effect of thyroid hormone (T3) and its receptor (TR) on the transcription of cyclin D1 gene, we co-transfected the chloramphenicol acetyl-transferase (CAT) reporter plasmid containing cyclin D1 promoter together with the expression plasmids for TRbeta1 and wild-type or mutant beta-catenin (SA) into 293T cells. In the presence of T3, beta-catenin-dependent transactivation of cyclin D1 promoter was suppressed by co-transfection of TRbeta1. The suppression by T3/TRbeta1 was in a dose-dependent manner. The CAT reporter gene in which Tcf/Lef-1 sites were fused to heterologous promoter was also suppressed by T3/TRbeta1. Furthermore, inhibition of endogenous wild-type beta-catenin by T3/TRbeta1 was observed in SW480 colon carcinoma cells with mutation of the adenomatous polyposis coli gene. These results indicate that the T3-bound TR inhibits the transcription of cyclin D1 through the Tcf/Lef-1 site, which is positively regulated by the Wnt-signaling pathway.


Substitution of Thr572 to Ala in mouse c-Myb attenuates progression of early erythroid differentiation.

  • Kyoko Kitagawa‎ et al.
  • Scientific reports‎
  • 2020‎

The expression level of transcription factor c-Myb oscillates during hematopoiesis. Fbw7 promotes ubiquitin-mediated degradation of c-Myb, which is dependent on phosphorylation of Thr572. To investigate the physiological relevance of Fbw7-mediated c-Myb degradation, we generated mutant mice carrying c-Myb-T572A (TA). Homozygous mutant (TA/TA) mice exhibited a reduction in the number of peripheral red blood cells and diminished erythroblasts in bone marrow, presumably as a result of failure during erythroblast differentiation. We found that c-Myb high-expressing cells converged in the Lin-CD71+ fraction, and the expression of c-Myb was higher in TA/TA mice than in wild-type mice. Moreover, TA/TA mice had an increased proportion of the CD71+ subset in Lin- cells. The c-Myb level in the Lin-CD71+ subset showed three peaks, and the individual c-Myb level was positively correlated with that of c-Kit, a marker of undifferentiated cells. Ultimately, the proportion of c-Mybhi subgroup was significantly increased in TA/TA mice compared with wild-type mice. These results indicate that a delay in reduction of c-Myb protein during an early stage of erythroid differentiation creates its obstacle in TA/TA mice. In this study, we showed the T572-dependent downregulation of c-Myb protein is required for proper differentiation in early-stage erythroblasts, suggesting the in vivo significance of Fbw7-mediated c-Myb degradation.


Stabilization of CDK6 by ribosomal protein uS7, a target protein of the natural product fucoxanthinol.

  • Yosuke Iizumi‎ et al.
  • Communications biology‎
  • 2022‎

Cyclins and cyclin-dependent kinases (CDKs) regulate the cell cycle, which is important for cell proliferation and development. Cyclins bind to and activate CDKs, which then drive the cell cycle. The expression of cyclins periodically changes throughout the cell cycle, while that of CDKs remains constant. To elucidate the mechanisms underlying the constant expression of CDKs, we search for compounds that alter their expression and discover that the natural product fucoxanthinol downregulates CDK2, 4, and 6 expression. We then develop a method to immobilize a compound with a hydroxyl group onto FG beads® and identify human ribosomal protein uS7 (also known as ribosomal protein S5) as the major fucoxanthinol-binding protein using the beads and mass spectrometry. The knockdown of uS7 induces G1 cell cycle arrest with the downregulation of CDK6 in colon cancer cells. CDK6, but not CDK2 or CDK4, is degraded by the depletion of uS7, and we furthermore find that uS7 directly binds to CDK6. Fucoxanthinol decreases uS7 at the protein level in colon cancer cells. By identifying the binding proteins of a natural product, the present study reveals that ribosomal protein uS7 may contribute to the constant expression of CDK6 via a direct interaction.


Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis.

  • Tomohiro Murakami‎ et al.
  • British journal of cancer‎
  • 2017‎

Tumour stroma has important roles in the development of colorectal cancer (CRC) metastasis. We aimed to clarify the roles of microRNAs (miRNAs) and their target genes in CRC stroma in the development of liver metastasis.


Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix.

  • Tatsuya Ohhata‎ et al.
  • Cell reports‎
  • 2021‎

The fine-scale dynamics from euchromatin (EC) to facultative heterochromatin (fHC) has remained largely unclear. Here, we focus on Xist and its silencing initiator Tsix as a paradigm of transcription-mediated conversion from EC to fHC. In mouse epiblast stem cells, induction of Tsix recapitulates the conversion at the Xist promoter. Investigating the dynamics reveals that the conversion proceeds in a stepwise manner. Initially, a transient opened chromatin structure is observed. In the second step, gene silencing is initiated and dependent on Tsix, which is reversible and accompanied by simultaneous changes in multiple histone modifications. At the last step, maintenance of silencing becomes independent of Tsix and irreversible, which correlates with occupation of the -1 position of the transcription start site by a nucleosome and initiation of DNA methylation introduction. This study highlights the hierarchy of multiple chromatin events upon stepwise gene silencing establishment.


CCIVR2 facilitates comprehensive identification of both overlapping and non-overlapping antisense transcripts within specified regions.

  • Maya Suzuki‎ et al.
  • Scientific reports‎
  • 2023‎

Pairs of sense and antisense transcriptions that are adjacent at their 5' and 3' regions are called divergent and convergent transcription, respectively. However, the structural properties of divergent/convergent transcription in different species or RNA biotypes are poorly characterized. Here, we developed CCIVR2, a program that facilitates identification of both overlapping and non-overlapping antisense transcripts produced from divergent/convergent transcription whose transcription start sites (TSS) or transcript end sites (TES) are located within a specified region. We used CCIVR2 to analyze antisense transcripts starting around the sense TSS (from divergent transcription) or ending around the sense TES (from convergent transcription) in 11 different species and found species- and RNA biotype-specific features of divergent/convergent transcription. Furthermore, we confirmed that CCIVR2 enables the identification of multiple sense/antisense transcript pairs from divergent transcription, including those with known functions in processes such as embryonic stem cell differentiation and TGFβ stimulation. CCIVR2 is therefore a valuable bioinformatics tool that facilitates the characterization of divergent/convergent transcription in different species and aids the identification of functional sense/antisense transcript pairs from divergent transcription in specified biological processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: