Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Effects of White Wine Consumption on Weight in Rats: Do Polyphenols Matter?

  • Ana Marija Milat‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2017‎

Effects of white wine and the role of wine polyphenols on weight gain in rats of different age were examined in the 4-week-voluntary-consumption trial.


Expression Pattern of iNOS, BCL-2 and MMP-9 in the Hip Synovium Tissue of Patients with Osteoarthritis.

  • Davor Caric‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Hip osteoarthritis (HOA) is characterized by degradation of the cartilage and synovitis. However, the pathohistological effects of synovial tissue inflammation on HOA are not clear. The aim of this study was to evaluate the expression of iNOS, BCL-2 and MMP-9 markers in different synovial cell populations. A total of 32 patients were evaluated retrospectively. Age, sex, height, weight, body mass index were recorded and lymphocyte, fibrocytes and macrophages were analysed in tissue sections. Osteoarthritis cartilage histopathology assessment system (OARSI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Krenn score, Harris Hip Score (HHS) and Kellgren-Lawrence (K-L) grading of the hip joints were performed. Total hip arthroplasty was performed on 32 patients and controls. Patients were divided into two groups according to their disease severity. The tissues were immunohistochemically analysed. K-L grade and Krenn score differ between all three groups, but also between moderate and severe OA. Synovial lining cell layer, resident cells in stroma and especially inflammatory infiltration were increasing with severity of OA. iNOS expression in both intima and subintima was positively correlated with Krenn score in moderate and severe osteoarthritis (OA) groups. Expression of BCL-2 in intima of severe OA patients was positively correlated with Krenn score. In conclusion, iNOS, BCL-2 and MMP-9 are involved in the regulation of HOA. Our study indicates a relationship between the pathohistological features, the synovial inflammation and the cartilage condition at the time of hip replacement due to OA or femoral neck fracture.


A mouse model of prostate cancer bone metastasis in a syngeneic immunocompetent host.

  • Brian W Simons‎ et al.
  • Oncotarget‎
  • 2019‎

We report the establishment of B6CaP, an allograft tumor line from a Hi-Myc transgenic mouse that had been backcrossed onto C57BL/6J background. This tumor line grows subcutaneously in wildtype C57BL/6J immunocompetent mice, expresses AR, and has a luminal cytokeratin profile. When digested into single cells and injected via intracardiac injection, B6CaP produces metastatic widespread metastases including frequent bone lesions. Metastatic lesions occur most often in the femur, spine, and skull, and have a mixed osteolytic/osteoblastic phenotype. B6CaP allografts are androgen dependent, and regress after castration. However, castration resistant tumors regrow after 4-6 months and can be maintained as androgen-independent clones. This is the first example of a prostate-derived tumor line that shows frequent metastasis to bone and grows in an immunocompetent host, making this model useful for studying mechanisms of bone metastasis and tumor immune response.


Eta polycaprolactone (ε-PCL) implants appear to cause a partial differentiation of breast cancer lung metastasis in a murine model.

  • Benjamin Benzon‎ et al.
  • BMC cancer‎
  • 2023‎

Cells in every epithelium can be roughly divided in three compartments: stem cell (SC) compartment, transient amplifying cell (TA) compartment and terminally differentiated (TD) compartment. Maturation of stem cells is characterized by epithelial stromal interaction and sequential maturational movement of stem cell's progeny through those compartments. In this work we hypothesize that providing an artificial stroma, which murine breast cancer metastatic cells can infiltrate, will induce their differentiation.


Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells.

  • Yuki Yasumoto‎ et al.
  • PloS one‎
  • 2016‎

Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.


Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys.

  • Ivona Kosovic‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control.


A Homozygous Dab1-/- Is a Potential Novel Cause of Autosomal Recessive Congenital Anomalies of the Mice Kidney and Urinary Tract.

  • Anita Racetin‎ et al.
  • Biomolecules‎
  • 2021‎

This study aimed to explore morphology changes in the kidneys of Dab1-/- (yotari) mice, as well as expression patterns of reelin, NOTCH2, LC3B, and cleaved caspase3 (CASP3) proteins, as potential determinants of normal kidney formation and function. We assumed that Dab1 functional inactivation may cause disorder in a wide spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Animals were sacrificed at postnatal days P4, P11, and P14. Paraffin-embedded kidney tissues were sectioned and analyzed by immunohistochemistry using specific antibodies. Kidney specimens were examined by bright-field, fluorescence, and electron microscopy. Data were analyzed by two-way ANOVA and t-tests. We noticed that yotari kidneys were smaller in size with a reduced diameter of nephron segments and thinner cortex. TEM microphotographs revealed foot process effacement in the glomeruli (G) of yotari mice, whereas aberrations in the structure of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) were not observed. A significant increase in reelin expression, NOTCH2, LC3B and cleaved CASP3 proteins was observed in the glomeruli of yotari mice. Renal hypoplasia in conjunction with foot process effacement and elevation in the expression of examined proteins in the glomeruli revealed CAKUT phenotype and loss of functional kidney tissue of yotari.


AATF and SMARCA2 are associated with thyroid volume in Hashimoto's thyroiditis patients.

  • Luka Brčić‎ et al.
  • Scientific reports‎
  • 2020‎

Thyroid volume of Hashimoto's thyroiditis (HT) patients varies in size over the course of disease and it may reflect changes in biological function of thyroid gland. Patients with subclinical hypothyroidism predominantly have increased thyroid volume whereas patients with more pronounced hypothyroidism have smaller thyroid volumes. Suggested mechanism for thyroid atrophy is thyrocyte death due to apoptosis. We performed the first genome-wide association study (GWAS) of thyroid volume in two groups of HT patients, depending on levothyroxine (LT4) therapy, and then meta-analysed across. Study included 345 HT patients in total and 6 007 322 common autosomal genetic variants. Underlying hypothesis was that genetic components that are involved in regulation of thyroid volume display their effect in specific pathophysiologic conditions of thyroid gland of HT patients. We additionally performed immunohistochemical analysis using thyroid tissues and analysed differences in expression levels of identified proteins and apoptotic marker between HT patients and controls. We found genome-wide significant association of two loci, both involved in apoptosis, with thyroid volume of HT patients: rs7212416 inside apoptosis-antagonizing transcription factor AATF (P = 8.95 × 10-9) and rs10738556 near chromatin-remodeling SMARCA2 (P = 2.83 × 10-8). In immunohistochemical analysis we observed that HT patients with homozygous AATF risk genotypes have decreased AATF expression (0.46-fold, P < 0.0001) and increased apoptosis (3.99-fold, P = 0.0001) in comparison to controls. HT patients with heterozygous SMARCA2 genotypes have decreased SMARCA2 expression, albeit without reaching statistical significance (1.07-fold, P = 0.5876), and significantly increased apoptosis (4.11-fold, P < 0.0001). By two lines of evidence we show that two highly plausible genetic loci, AATF and SMARCA2, may be involved in determining the thyroid volume of HT patients. The results of our study significantly add to the current knowledge of disturbed biological mechanisms in thyroid gland of HT patients.


Expression of DENDRIN in several glomerular diseases and correlation to pathological parameters and renal failure - preliminary study.

  • Maja Mizdrak‎ et al.
  • Diagnostic pathology‎
  • 2018‎

In glomerular injury dendrin translocates from the slit diaphragm to the podocyte nucleus, inducing apoptosis. We analyzed dendrin expression in IgA glomerulonephritis and Henoch Schönlein purpura (IgAN/HSP) versus in podocytopathies minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), and compared it to pathohistological findings and renal function at the time of biopsy and the last follow-up.


A pilot trial of pembrolizumab plus prostatic cryotherapy for men with newly diagnosed oligometastatic hormone-sensitive prostate cancer.

  • Ashley E Ross‎ et al.
  • Prostate cancer and prostatic diseases‎
  • 2020‎

Monotherapy with immune checkpoint inhibitors has generally been unsuccessful in men with advanced prostate cancer. Preclinical data support the notion that cryotherapy may improve immune-mediated and anti-tumor responses. The objective of this study was to assess the safety and feasibility of whole-prostate gland cryotherapy combined with pembrolizumab and androgen deprivation in men with oligometastatic hormone-sensitive prostate cancer.


Alteration of Cx37, Cx40, Cx43, Cx45, Panx1, and Renin Expression Patterns in Postnatal Kidneys of Dab1-/- (yotari) Mice.

  • Mirela Lozić‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Numerous evidence corroborates roles of gap junctions/hemichannels in proper kidney development. We analyzed how Dab1 gene functional silencing influences expression and localization of Cx37, Cx40, Cx43, Cx45, Panx1 and renin in postnatal kidneys of yotari mice, by using immunohistochemistry and electron microscopy. Dab1 Δ102/221 might lead to the activation of c-Src tyrosine kinase, causing the upregulation of Cx43 in the medulla of yotari mice. The expression of renin was more prominent in yotari mice (p < 0.001). Renin granules were unusually present inside the vascular walls of glomeruli capillaries, in proximal and distal convoluted tubules and in the medulla. Disfunction of Cx40 is likely responsible for increased atypically positioned renin cells which release renin in an uncontrolled fashion, but this doesn't rule out simultaneous involvement of other Cxs, such as Cx45 which was significantly increased in the yotari cortex. The decreased Cx37 expression in yotari medulla might contribute to hypertension reduction provoked by high renin expression. These findings imply the relevance of Cxs/Panx1 as markers of impaired kidney function (high renin) in yotari mice and that they have a role in the preservation of intercellular signaling and implicate connexopathies as the cause of premature death of yotari mice.


Role of ST6GAL1 in Thyroid Cancers: Insights from Tissue Analysis and Genomic Datasets.

  • Ivana Gunjača‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Thyroid cancer is the predominant endocrine-related malignancy. ST6 β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) has been studied in various types of cancers; however, the expression and function of ST6GAL1 in thyroid cancer has not been investigated so far. Previously, we conducted two genome-wide association studies and have identified the association of the ST6GAL1 gene with plasma thyroglobulin (Tg) levels. Since Tg levels are altered in thyroid pathologies, in the current study, we wanted to evaluate the expression of ST6GAL1 in thyroid cancer tissues. We performed an immunohistochemical analysis using human thyroid tissue from 89 patients and analyzed ST6GAL1 protein expression in papillary thyroid cancer (including follicular variant and microcarcinoma) and follicular thyroid cancer in comparison to normal thyroid tissue. Additionally, ST6GAL1 mRNA levels from The Cancer Genome Atlas (TCGA, n = 572) and the Genotype-Tissue Expression (GTEx) project (n = 279) were examined. The immunohistochemical analysis revealed higher ST6GAL1 protein expression in all thyroid tumors compared to normal thyroid tissue. TCGA data revealed increased ST6GAL1 mRNA levels in both primary and metastatic tumors versus controls. Notably, the follicular variant of papillary thyroid cancer exhibited significantly higher ST6GAL1 mRNA levels than classic papillary thyroid cancer. High ST6GAL1 mRNA levels significantly correlated with lymph node metastasis status, clinical stage, and reduced survival rate. ST6GAL1 emerges as a potential cancer-associated glycosyltransferase in thyroid malignancies, offering valuable insights into its diagnostic and prognostic significance.


Association of NOS3 tag polymorphisms with hypoxic-ischemic encephalopathy.

  • Radenka Kuzmanić Samija‎ et al.
  • Croatian medical journal‎
  • 2011‎

To test the association of NOS3 gene with hypoxic-ischemic encephalopathy (HIE).


Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases.

  • Tetsuro Matsuhashi‎ et al.
  • EBioMedicine‎
  • 2017‎

Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model "Mitomouse" (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial.


The role of fatty acid binding protein 7 in spinal cord astrocytes in a mouse model of experimental autoimmune encephalomyelitis.

  • Kenyu Kamizato‎ et al.
  • Neuroscience‎
  • 2019‎

Fatty acid binding protein 7 (FABP7) is expressed in astrocytes of the developing and mature central nervous system, and modulates astrocyte function by controlling intracellular fatty acid homeostasis. Astrocytes in the spinal cord have an important role in the process of myelin degeneration and regeneration. In the present study, the authors examined the role of FABP7 in astrocytes in a mouse model of experimental autoimmune encephalomyelitis (EAE), which is an established model of multiple sclerosis (MS). FABP7 was expressed in the white matter astrocytes and increased after EAE onset; particularly strong expression was observed in demyelinating regions. In FABP7-knockout (KO) mice, the onset of EAE symptoms occurred earlier than in wild type (WT) mice, and mRNA expression levels of inflammatory cytokines (IL-17 and TNF-α) were higher in FABP7-KO lumbar spinal cord than in WT lumbar spinal cord at early stage of EAE. Interestingly, however, the clinical score was significantly reduced in FABP7-KO mice compared with WT mice in the late phase of EAE. Moreover, the area exhibiting expression of fibronectin, which is an extracellular matrix protein mainly produced by astrocytes and inhibits remyelination of oligodendrocytes, was significantly decreased in FABP7-KO compared with WT mice. Collectively, FABP7 in astrocyte may have a role to protect from the induction of inflammation leading to demyelination in CNS at early phase of EAE. Moreover, FABP7 may be involved in the regulation of fibronectin production through the modification of astrocyte activation at late phase of EAE.


Liver damage indices as a tool for modifying methadone maintenance treatment: a cross-sectional study.

  • Željko Ključević‎ et al.
  • Croatian medical journal‎
  • 2018‎

To assess the effect of liver damage on methadone metabolism in opiate addicts undergoing methadone maintenance treatment (MMT).


Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy.

  • Marjan Urlić‎ et al.
  • Nutrients‎
  • 2020‎

We studied the influence of experimentally induced DM1, in combination with different dietary n6:n3 polyunsaturated fatty acid (PUFA) ratios on different types of nerve fibers in rat myocardium, in order to reveal whether protective/unfavorable effects of different PUFAs on myocardial function in diabetic patients could be a (partial) repercussion of their effect on the changes in cardiac innervation. The control group (c) and diabetic group (stz) were fed with an n6/n3 ratio of ≈7; the diet of the stz+n6 group had an n6/n3 ratio ≈60, while the diet for the stz+DHA group contained 2.5% of fish oil (containing 16% eicosapentaenoic acid-EPA and 19% docosahexaenoic acid-DHA), n6/n3 ratio of ≈1. DM1 was induced by i.p. injection of streptozotocin (55 mg/kg) and rats were euthanized 30 days after induction. Immunohistochemistry was used for the detection and quantification of different types of neuronal fibers in the cardiac septum. We found changes in cardiac innervations characteristics for the initial phase of experimental DM1, which manifested as an increase in total number and area density of all neuronal fibers, measured by Pgp9.5 immunoreactivity. By detailed analysis, we found that this increase consisted mostly of heavy myelinated NF200 immunoreactive fibers and TH immunoreactive sympathetic fibers, while the density of ChAT immunoreactive parasympathetic fibers decreased. In the deep (middle) part of the myocardium, where rare fibers (of all studied types) were found, significant differences were not found. Surprisingly, we found a more consistent protective effect of n6 PUFAs, in comparison to n3 PUFAs supplementation. These results may provide a better understanding of the potential impacts of different PUFA ratios in the diet of diabetic patients on cardiac innervation and genesis and outcome of diabetic autonomic cardiomyopathy.


Using Cutaneous Receptor Vibration to Uncover the Effect of Transcranial Magnetic Stimulation (TMS) on Motor Cortical Excitability.

  • Maja Rogić Vidaković‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Little is known about how vibrational stimuli applied to hand digits affect motor cortical excitability. The present transcranial magnetic stimulation (TMS) study investigated motor evoked potentials (MEPs) in the upper extremity muscle following high-frequency vibratory digit stimulation. MATERIAL AND METHODS High-frequency vibration was applied to the upper extremity digit II utilizing a miniature electromagnetic solenoid-type stimulator-tactor in 11 healthy study participants. The conditioning stimulation (C) preceded the test magnetic stimulation (T) by inter-stimulus intervals (ISIs) of 5-500 ms in 2 experimental sessions. The TMS was applied over the primary motor cortex for the hand abductor pollicis-brevis (APB) muscle. RESULTS Dunnett's multiple comparisons test indicated significant suppression of MEP amplitudes at ISIs of 200 ms (P=0.001), 300 ms (P=0.023), and 400 ms (P=0.029) compared to control. CONCLUSIONS MEP amplitude suppression was observed in the APB muscle at ISIs of 200-400 ms, applying afferent signaling that originates in skin receptors following the vibratory stimuli. The study provides novel insight on the time course and MEP modulation following cutaneous receptor vibration of the hand digit. The results of the study may have implications in neurology in the neurorehabilitation of patients with increased amplitude of MEPs.


The applicability of magnetic resonance imaging classification system (MRICS) for cerebral palsy and its association with perinatal factors and related disabilities in a Croatian population-based sample.

  • Sanja Lovrić Kojundžić‎ et al.
  • Croatian medical journal‎
  • 2021‎

To investigate the association of cerebral palsy motor disorders, perinatal factors, and related disabilities with brain magnetic resonance imaging classification score (MRICS)-based groups in a population-based sample.


Spatio-temporal patterning of different connexins in developing and postnatal human kidneys and in nephrotic syndrome of the Finnish type (CNF).

  • Ivona Kosovic‎ et al.
  • Scientific reports‎
  • 2020‎

Connexins (Cxs) are membrane-spanning proteins which enable flow of information important for kidney homeostasis. Changes in their spatiotemporal patterning characterize blood vessel abnormalities and chronic kidney diseases (CKD). We analysed spatiotemporal expression of Cx37, Cx40, Cx43 and Cx45 in nephron and glomerular cells of developing, postnatal kidneys, and nephrotic syndrome of the Finnish type (CNF) by using immunohistochemistry, statistical methods and electron microscopy. During kidney development, strong Cx45 expression in proximal tubules and decreasing expression in glomeruli was observed. In developing distal nephron, Cx37 and Cx40 showed moderate-to-strong expression, while weak Cx43 expression gradually increased. Cx45/Cx40 co-localized in mesangial and granular cells. Cx43 /Cx45 co-localized in podocytes, mesangial and parietal epithelial cells, and with podocyte markers (synaptopodin, nephrin). Different Cxs co-expressed with endothelial (CD31) and VSMC (α -SMA) markers in vascular walls. Peak signalling of Cx37, Cx43 and Cx40 accompanied kidney nephrogenesis, while strongest Cx45 signalling paralleled nephron maturation. Spatiotemporal Cxs patterning indicate participation of Cx45 in differentiation of proximal tubules, and Cx43, Cx37 and Cx40 in distal tubules differentiation. CNF characterized disorganized Cx45 expression in proximal tubules, increased Cx43 expression in distal tubules and overall elevation of Cx40 and Cx37, while Cx40 co-localized with increased number of interstitial myofibroblasts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: