Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

The Interaction of Myc with Miz1 Defines Medulloblastoma Subgroup Identity.

  • BaoHan T Vo‎ et al.
  • Cancer cell‎
  • 2016‎

Four distinct subgroups of cerebellar medulloblastomas (MBs) differ in their histopathology, molecular profiles, and prognosis. c-Myc (Myc) or MycN overexpression in granule neuron progenitors (GNPs) induces Group 3 (G3) or Sonic Hedgehog (SHH) MBs, respectively. Differences in Myc and MycN transcriptional profiles depend, in part, on their interaction with Miz1, which binds strongly to Myc but not MycN, to target sites on chromatin. Myc suppresses ciliogenesis and reprograms the transcriptome of SHH-dependent GNPs through Miz1-dependent gene repression to maintain stemness. Genetic disruption of the Myc/Miz1 interaction inhibited G3 MB development. Target genes of Myc/Miz1 are repressed in human G3 MBs but not in other subgroups. Therefore, the Myc/Miz1 interaction is a defining hallmark of G3 MB development.


Preclinical studies of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in pediatric brain tumors.

  • Marie Morfouace‎ et al.
  • Journal of neuro-oncology‎
  • 2016‎

Chemotherapies active in preclinical studies frequently fail in the clinic due to lack of efficacy, which limits progress for rare cancers since only small numbers of patients are available for clinical trials. Thus, a preclinical drug development pipeline was developed to prioritize potentially active regimens for pediatric brain tumors spanning from in vitro drug screening, through intracranial and intra-tumoral pharmacokinetics to in vivo efficacy studies. Here, as an example of the pipeline, data are presented for the combination of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in three pediatric brain tumor models. The in vitro activity of nine novel therapies was tested against tumor spheres derived from faithful mouse models of Group 3 medulloblastoma, ependymoma, and choroid plexus carcinoma. Agents with the greatest in vitro potency were then subjected to a comprehensive series of in vivo pharmacokinetic (PK) and pharmacodynamic (PD) studies culminating in preclinical efficacy trials in mice harboring brain tumors. The nucleoside analog 5-fluoro-2'-deoxycytidine (FdCyd) markedly reduced the proliferation in vitro of all three brain tumor cell types at nanomolar concentrations. Detailed intracranial PK studies confirmed that systemically administered FdCyd exceeded concentrations in brain tumors necessary to inhibit tumor cell proliferation, but no tumor displayed a significant in vivo therapeutic response. Despite promising in vitro activity and in vivo PK properties, FdCyd is unlikely to be an effective treatment of pediatric brain tumors, and therefore was deprioritized for the clinic. Our comprehensive and integrated preclinical drug development pipeline should reduce the attrition of drugs in clinical trials.


Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition.

  • Shalini Singh‎ et al.
  • eLife‎
  • 2016‎

In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers.


Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis.

  • Clara Penas‎ et al.
  • Cell reports‎
  • 2015‎

Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.


Dicer Is Required for Normal Cerebellar Development and to Restrain Medulloblastoma Formation.

  • Frederique Zindy‎ et al.
  • PloS one‎
  • 2015‎

Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation.


The critical role that STAT3 plays in glioma-initiating cells: STAT3 addiction in glioma.

  • Debolina Ganguly‎ et al.
  • Oncotarget‎
  • 2018‎

Glioma-Initiating Cells (GICs) are thought to be responsible for tumor initiation, progression and recurrence in glioblastoma (GBM). In previous studies, we reported the constitutive phosphorylation of the STAT3 transcription factor in GICs derived from GBM patient-derived xenografts, and that STAT3 played a critical role in GBM tumorigenesis. In this study, we show that CRISPR/Cas9-mediated deletion of STAT3 in an established GBM cell line markedly inhibited tumorigenesis by intracranial injection but had little effect on cell proliferation in vitro. Tumorigenesis was rescued by the enforced expression of wild-type STAT3 in cells lacking STAT3. In contrast, GICs were highly addicted to STAT3 and upon STAT3 deletion GICs were non-viable. Moreover, we found that STAT3 was constitutively activated in GICs by phosphorylation on both tyrosine (Y705) and serine (S727) residues. Therefore, to study STAT3 function in GICs we established an inducible system to knockdown STAT3 expression (iSTAT3-KD). Using this approach, we demonstrated that Y705-STAT3 phosphorylation was critical and indispensable for GIC-induced tumor formation. Both phosphorylation sites in STAT3 promoted GIC proliferation in vitro. We further showed that S727-STAT3 phosphorylation was Y705-dependent. Targeted microarray and RNA sequencing revealed that STAT3 activated cell-cycle regulator genes, and downregulated genes involved in the interferon response, the hypoxia response, the TGFβ pathway, and remodeling of the extracellular matrix. Since STAT3 is an important oncogenic driver of GBM, the identification of these STAT3 regulated pathways in GICs will inform the development of better targeted therapies against STAT3 in GBM and other cancers.


Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma.

  • BaoHan T Vo‎ et al.
  • Cell reports‎
  • 2017‎

The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.


Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors.

  • William R Shadrick‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2018‎

Within the last decade, the Bromodomain and Extra-Terminal domain family (BET) of proteins have emerged as promising drug targets in diverse clinical indications including oncology, auto-immune disease, heart failure, and male contraception. The BET family consists of four isoforms (BRD2, BRD3, BRD4, and BRDT/BRDT6) which are distinguished by the presence of two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine (KAc) residues and appear to have distinct biological roles. BET BD1 and BD2 bromodomains differ at five positions near the substrate binding pocket: the variation in the ZA channel induces different water networks nearby. We designed a set of congeneric 2- and 3-heteroaryl substituted tetrahydroquinolines (THQ) to differentially engage bound waters in the ZA channel with the goal of achieving bromodomain selectivity. SJ830599 (9) showed modest, but consistent, selectivity for BRD2-BD2. Using isothermal titration calorimetry, we showed that the binding of all THQ analogs in our study to either of the two bromodomains was enthalpy driven. Remarkably, the binding of 9 to BRD2-BD2 was marked by negative entropy and was entirely driven by enthalpy, consistent with significant restriction of conformational flexibility and/or engagement with bound waters. Co-crystallography studies confirmed that 9 did indeed stabilize a water-mediated hydrogen bond network. Finally, we report that 9 retained cytotoxicity against several pediatric cancer cell lines with EC50 values comparable to BET inhibitor (BETi) clinical candidates.


Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype.

  • Timothy N Phoenix‎ et al.
  • Cancer cell‎
  • 2016‎

The childhood brain tumor, medulloblastoma, includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant β-catenin in WNT-medulloblastoma, an essentially curable form of the disease, induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoral chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma, a less curable disease subtype, contains an intact blood brain barrier, rendering this tumor impermeable and resistant to chemotherapy. The medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumor vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumors.


Embryonic Expression and Function of the Xenopus Ink4d Cyclin D-Dependent Kinase Inhibitor.

  • Joanne R Doherty‎ et al.
  • Cell & developmental biology‎
  • 2014‎

Here we report the cloning and functional characterization of the cyclin D-dependent kinase 4 and 6 (Cdk4/6) inhibitory protein Cdkn2d/p19Ink4d of Xenopuslaevis (Xl-Ink4d). Xl-Ink4d is the only Ink4 family gene highly expressed during Xenopus development and its transcripts were detected maternally and during neurulation. The Xl-Ink4d protein has 63% identity to mouse and human Cdkn2d/p19Ink4d and its function as a negative regulator of cell cycle traverse is evolutionary conserved. Indeed, Xl-lnk4d can functionally substitute for mouse Cdkn2d in binding to mouse Cdk4 and inhibiting cyclin-D1-dependent CDK4 kinase activity. Further, enforced expression of Xl-lnk4d arrests mouse fibroblasts in the G1 phase of the cell cycle. These findings indicate that CDKN2d/p19Ink4d is conserved through vertebrate evolution and suggest Xl-lnk4d may contribute to the development of Xenopuslaevis.


Novel mutations target distinct subgroups of medulloblastoma.

  • Giles Robinson‎ et al.
  • Nature‎
  • 2012‎

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling.

  • Marc Zuckermann‎ et al.
  • Nature communications‎
  • 2015‎

In vivo functional investigation of oncogenes using somatic gene transfer has been successfully exploited to validate their role in tumorigenesis. For tumour suppressor genes this has proven more challenging due to technical aspects. To provide a flexible and effective method for investigating somatic loss-of-function alterations and their influence on tumorigenesis, we have established CRISPR/Cas9-mediated somatic gene disruption, allowing for in vivo targeting of TSGs. Here we demonstrate the utility of this approach by deleting single (Ptch1) or multiple genes (Trp53, Pten, Nf1) in the mouse brain, resulting in the development of medulloblastoma and glioblastoma, respectively. Using whole-genome sequencing (WGS) we characterized the medulloblastoma-driving Ptch1 deletions in detail and show that no off-targets were detected in these tumours. This method provides a fast and convenient system for validating the emerging wealth of novel candidate tumour suppressor genes and the generation of faithful animal models of human cancer.


Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma.

  • Chen He‎ et al.
  • Nature communications‎
  • 2021‎

Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.


Mouse medulloblastoma driven by CRISPR activation of cellular Myc.

  • BaoHan T Vo‎ et al.
  • Scientific reports‎
  • 2018‎

MYC-driven Group 3 (G3) medulloblastoma (MB) is the most aggressive of four molecular subgroups classified by transcriptome, genomic landscape and clinical outcomes. Mouse models that recapitulate human G3 MB all rely on retroviral vector-induced Myc expression driven by viral regulatory elements (Retro-Myc tumors). We used nuclease-deficient CRISPR/dCas9-based gene activation with combinatorial single guide RNAs (sgRNAs) to enforce transcription of endogenous Myc in Trp53-null neurospheres that were orthotopically transplanted into the brains of naïve animals. Three combined sgRNAs linked to dCas9-VP160 induced cellular Myc expression and large cell anaplastic MBs (CRISPR-Myc tumors) which recapitulated the molecular characteristics of mouse and human G3 MBs. The BET inhibitor JQ1 suppressed MYC expression in a human G3 MB cell line (HD-MB03) and CRISPR-Myc, but not in Retro-Myc MBs. This G3 MB mouse model in which Myc expression is regulated by its own promoter will facilitate pre-clinical studies with drugs that regulate Myc transcription.


MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat.

  • Ida Annunziata‎ et al.
  • Nature communications‎
  • 2019‎

Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.


Combination of Ribociclib with BET-Bromodomain and PI3K/mTOR Inhibitors for Medulloblastoma Treatment In Vitro and In Vivo.

  • Barbara Jonchere‎ et al.
  • Molecular cancer therapeutics‎
  • 2023‎

Despite improvement in the treatment of medulloblastoma over the last years, numerous patients with MYC- and MYCN-driven tumors still fail current therapies. Medulloblastomas have an intact retinoblastoma protein RB, suggesting that CDK4/6 inhibition might represent a therapeutic strategy for which drug combination remains understudied. We conducted high-throughput drug combination screens in a Group3 (G3) medulloblastoma line using the CDK4/6 inhibitor (CDK4/6i) ribociclib at IC20, referred to as an anchor, and 87 oncology drugs approved by FDA or in clinical trials. Bromodomain and extra terminal (BET) and PI3K/mTOR inhibitors potentiated ribociclib inhibition of proliferation in an established cell line and freshly dissociated tumor cells from intracranial xenografts of G3 and Sonic hedgehog (SHH) medulloblastomas in vitro. A reverse combination screen using the BET inhibitor JQ1 as anchor, revealed CDK4/6i as the most potentiating drugs. In vivo, ribociclib showed single-agent activity in medulloblastoma models whereas JQ1 failed to show efficacy due to high clearance and insufficient free brain concentration. Despite in vitro synergy, combination of ribociclib with the PI3K/mTOR inhibitor paxalisib did not significantly improve the survival of G3 and SHH medulloblastoma-bearing mice compared with ribociclib alone. Molecular analysis of ribociclib and paxalisib-treated tumors revealed that E2F targets and PI3K/AKT/MTORC1 signaling genes were depleted, as expected. Importantly, in one untreated G3MB model HD-MB03, the PI3K/AKT/MTORC1 gene set was enriched in vitro compared with in vivo suggesting that the pathway displayed increased activity in vitro. Our data illustrate the difficulty in translating in vitro findings in vivo. See related article in Mol Cancer Ther (2022) 21(8):1306-1317.


Primary cilia control translation and the cell cycle in medulloblastoma.

  • Yong Ha Youn‎ et al.
  • Genes & development‎
  • 2022‎

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding β-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Class I HDAC inhibitor entinostat synergizes with PLK1 inhibitors in MYC-amplified medulloblastoma cells.

  • Gintvile Valinciute‎ et al.
  • Journal of neuro-oncology‎
  • 2023‎

We and others have demonstrated that MYC-amplified medulloblastoma (MB) cells are susceptible to class I histone deacetylase inhibitor (HDACi) treatment. However, single drug treatment with HDACi has shown limited clinical efficacy. We hypothesized that addition of a second compound acting synergistically with HDACi may enhance efficacy.


Atypical teratoid/rhabdoid tumoroids reveal subgroup-specific drug vulnerabilities.

  • Irene Paassen‎ et al.
  • Oncogene‎
  • 2023‎

Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric brain tumor entity. They are genetically defined by alterations in the SWI/SNF chromatin remodeling complex members SMARCB1 or SMARCA4. ATRTs can be further classified in different molecular subgroups based on their epigenetic profiles. Although recent studies suggest that the different subgroups have distinct clinical features, subgroup-specific treatment regimens have not been developed thus far. This is hampered by the lack of pre-clinical in vitro models representative of the different molecular subgroups. Here, we describe the establishment of ATRT tumoroid models from the ATRT-MYC and ATRT-SHH subgroups. We demonstrate that ATRT tumoroids retain subgroup-specific epigenetic and gene expression profiles. High throughput drug screens on our ATRT tumoroids revealed distinct drug sensitivities between and within ATRT-MYC and ATRT-SHH subgroups. Whereas ATRT-MYC universally displayed high sensitivity to multi-targeted tyrosine kinase inhibitors, ATRT-SHH showed a more heterogeneous response with a subset showing high sensitivity to NOTCH inhibitors, which corresponded to high expression of NOTCH receptors. Our ATRT tumoroids represent the first pediatric brain tumor organoid model, providing a representative pre-clinical model which enables the development of subgroup-specific therapies.


Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development.

  • Frederique Zindy‎ et al.
  • Biology open‎
  • 2014‎

The miR-17∼92 cluster family is composed of three members encoding microRNAs that share seed sequences. To assess their role in cerebellar and medulloblastoma (MB) development, we deleted the miR-17∼92 cluster family in Nestin-positive neural progenitors and in mice heterozygous for the Sonic Hedgehog (SHH) receptor Patched 1 (Ptch1(+/-)). We show that mice in which we conditionally deleted the miR-17∼92 cluster (miR-17∼92(floxed/floxed); Nestin-Cre(+)) alone or together with the complete loss of the miR-106b∼25 cluster (miR-106b∼25(-/-)) were born alive but with small brains and reduced cerebellar foliation. Remarkably, deletion of the miR-17∼92 cluster abolished the development of SHH-MB in Ptch1(+/-) mice. Using an orthotopic transplant approach, we showed that granule neuron precursors (GNPs) purified from the cerebella of postnatal day 7 (P7) Ptch1(+/-); miR-106b∼25(-/-) mice and overexpressing Mycn induced MBs in the cortices of naïve recipient mice. In contrast, GNPs purified from the cerebella of P7 Ptch1(+/-); miR-17∼92(floxed/floxed); Nestin-Cre(+) animals and overexpressing Mycn failed to induce tumors in recipient animals. Taken together, our findings demonstrate that the miR-17∼92 cluster is dispensable for cerebellar development, but required for SHH-MB development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: