2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim.

  • Claudia Haftmann‎ et al.
  • European journal of immunology‎
  • 2015‎

Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.


miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2.

  • Martina Porstner‎ et al.
  • European journal of immunology‎
  • 2015‎

B cells undergo affinity maturation and class switch recombination of their immunoglobulin receptors during a germinal center (GC) reaction, before they differentiate into long-lived antibody-secreting plasma cells (PCs). Transcription factors such as Bach2 and Mitf are essential during this process, as they delay premature differentiation of GC B cells by repressing Blimp-1 and IRF4, two transcription factors required for terminal PC differentiation. Therefore, Bach2 and Mitf expression must be attenuated in activated B cells to allow terminal PC differentiation, but the precise mechanism remains enigmatic. Here, we provide evidence that miR-148a, a small noncoding microRNA, fosters PC differentiation and survival. Next-generation sequencing revealed that miR-148a is the most abundant microRNA in primary human and murine PCs, and its expression is upregulated in activated murine B cells and coincides with Blimp-1 synthesis. miR-148a targets Bach2, Mitf and proapoptotic factors such as PTEN and Bim. When prematurely expressed, miR-148a promotes the differentiation and survival of plasmablasts and reduces frequencies of IgG1(+) cells in primary B-cell cultures. In summary, we propose that miR-148a is a new player in the regulatory network controlling terminal PC differentiation and could, therefore, be a therapeutic target for interfering with PC differentiation and survival.


Onset and progression of diabetes in kidney transplant patients receiving everolimus or cyclosporine therapy: an analysis of two randomized, multicenter trials.

  • Claudia Sommerer‎ et al.
  • BMC nephrology‎
  • 2018‎

Conversion from calcineurin inhibitor (CNI) therapy to a mammalian target of rapamycin (mTOR) inhibitor following kidney transplantation may help to preserve graft function. Data are sparse, however, concerning the impact of conversion on posttransplant diabetes mellitus (PTDM) or the progression of pre-existing diabetes.


Everolimus in de novo kidney transplant recipients participating in the Eurotransplant senior program: Results of a prospective randomized multicenter study (SENATOR).

  • Susanne Brakemeier‎ et al.
  • PloS one‎
  • 2019‎

Early conversion to everolimus was assessed in kidney transplant recipients participating in the Eurotransplant Senior Program (ESP), a population in whom data are lacking. The SENATOR multicenter study enrolled 207 kidney transplant recipients undergoing steroid withdrawal at week 2 post-transplant (ClinicalTrials.gov [NCT00956293]). At week 7, patients were randomized (1:2 ratio) to continue the previous calcineurin inhibitor (CNI)-based regimen with mycophenolic acid (MPA) and cyclosporine or switch to a CNI-free regimen with MPA, everolimus (5-10 ng/mL) and basiliximab at weeks 7 and 12, then followed for 18 weeks to month 6 post-transplant. The primary endpoint was estimated GFR (eGFR). At week 7, 77/207 (37.2%) patients were randomized (53 everolimus, 24 control). At month 6, eGFR was comparable: 36.5±10.8ml/min with everolimus versus 42.0±13.0ml/min in the control group (p = 0.784). Discontinuation due to adverse events occurred in 27.8% of everolimus-treated patients and 0.0% of control patients (p = 0005). Efficacy profiles showed no difference. In conclusion, eGFR, safety and efficacy outcomes at month 6 post-transplant showed no difference between groups. The everolimus group experienced a higher rate of discontinuation due to adverse events. However, the high rate of non-randomization is highly relevant, indicating this to be a somewhat unstable patient population regardless of treatment.


Direct uptake of Antagomirs and efficient knockdown of miRNA in primary B and T lymphocytes.

  • Claudia Haftmann‎ et al.
  • Journal of immunological methods‎
  • 2015‎

Depending on their physiological expression level, microRNAs (miRNA) address different target genes, thus have different biological functions. To identify these, the physiological expression has to be blocked. Here, we describe the use of inhibitory cholesterol-modified oligonucleotides (Antagomirs) to inhibit miRNAs selectively in primary human and murine T and B lymphocytes. Due to their lipophilic cholesterol tag Antagomirs enter primary lymphocytes efficiently and quantitatively. We show here that at concentrations of 0.125 to 1μM, Antagomirs selectively inhibit expression of their target miRNA up to 99.5% without affecting cell viability.


HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing.

  • Marco Preussner‎ et al.
  • Nucleic acids research‎
  • 2012‎

CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4-6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL). To address the complex combinatorial splicing of exons 4-6, we investigated hnRNP L/LL protein expression in human B-cells in relation to CD45 splicing patterns, applying RNA-Seq. In addition, mutational and RNA-binding analyses were carried out in HeLa cells. We conclude that hnRNP LL functions as the major CD45 splicing repressor, with two CA elements in exon 6 as its primary target. In exon 4, one element is targeted by both hnRNP L and LL. In contrast, exon 5 was never repressed on its own and only co-regulated with exons 4 and 6. Stable L/LL interaction requires CD45 RNA, specifically exons 4 and 6. We propose a novel model of combinatorial alternative splicing: HnRNP L and LL cooperate on the CD45 pre-mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full repression of the three variable exons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: