Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers.

  • Fabiana H G Farias‎ et al.
  • Neurobiology of disease‎
  • 2011‎

A recessive, adult-onset neuronal ceroid-lipofuscinosis (NCL) occurs in Tibetan terriers. A genome-wide association study restricted this NCL locus to a 1.3Mb region of canine chromosome 2 which contains canine ATP13A2. NCL-affected dogs were homozygous for a single-base deletion in ATP13A2, predicted to produce a frameshift and premature termination codon. Homozygous truncating mutations in human ATP13A2 have been shown by others to cause Kufor-Rakeb syndrome (KRS), a rare neurodegenerative disease. These findings suggest that KRS is also an NCL, although analysis of KRS brain tissue will be needed to confirm this prediction. Generalized brain atrophy, behavioral changes, and cognitive decline occur in both people and dogs with ATP13A2 mutations; however, other clinical features differ between the species. For example, Tibetan terriers with NCL develop cerebellar ataxia not reported in KRS patients and KRS patients exhibit parkinsonism and pyramidal dysfunction not observed in affected Tibetan terriers. To see if ATP13A2 mutations could be responsible for some cases of human adult-onset NCL (Kufs disease), we resequenced ATP13A2 from 28 Kufs disease patients. None of these patients had ATP13A2 sequence variants likely to be causal for their disease, suggesting that mutations in this gene are not common causes of Kufs disease.


A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in Black Russian Terrier dogs.

  • Tendai Mhlanga-Mutangadura‎ et al.
  • Neurobiology of disease‎
  • 2016‎

An autosomal recessive disease of Black Russian Terriers was previously described as a juvenile-onset, laryngeal paralysis and polyneuropathy similar to Charcot Marie Tooth disease in humans. We found that in addition to an axonal neuropathy, affected dogs exhibit microphthalmia, cataracts, and miotic pupils. On histopathology, affected dogs exhibit a spongiform encephalopathy characterized by accumulations of abnormal, membrane-bound vacuoles of various sizes in neuronal cell bodies, axons and adrenal cells. DNA from an individual dog with this polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV) was used to generate a whole genome sequence which contained a homozygous RAB3GAP1:c.743delC mutation that was absent from 73 control canine whole genome sequences. An additional 12 Black Russian Terriers with POANV were RAB3GAP1:c.743delC homozygotes. DNA samples from 249 Black Russian Terriers with no known signs of POANV were either heterozygotes or homozygous for the reference allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM), a severe developmental disorder characterized by abnormalities of the eye, genitals and nervous system including a predominantly axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission. The neuronal vacuolation and membranous inclusions and vacuoles in axons seen in this canine disorder likely reflect alterations of these processes. Thus, this canine disease could serve as a model for WARBM and provide insight into its pathogenesis and treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: