2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Overview of the protein-protein interaction annotation extraction task of BioCreative II.

  • Martin Krallinger‎ et al.
  • Genome biology‎
  • 2008‎

The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing.


The CHEMDNER corpus of chemicals and drugs and its annotation principles.

  • Martin Krallinger‎ et al.
  • Journal of cheminformatics‎
  • 2015‎

The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.


Evaluation of BioCreAtIvE assessment of task 2.

  • Christian Blaschke‎ et al.
  • BMC bioinformatics‎
  • 2005‎

Molecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed.


A sentence sliding window approach to extract protein annotations from biomedical articles.

  • Martin Krallinger‎ et al.
  • BMC bioinformatics‎
  • 2005‎

Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations.


PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts.

  • Jordi Armengol-Estapé‎ et al.
  • Genomics & informatics‎
  • 2019‎

Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL). PharmacoNER Tagger can be accessed at https://github.com/PlanTL-SANIDAD/PharmacoNER.


LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes.

  • Andres Cañada‎ et al.
  • Nucleic acids research‎
  • 2017‎

A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es.


Overview of DrugProt task at BioCreative VII: data and methods for large-scale text mining and knowledge graph generation of heterogenous chemical-protein relations.

  • Antonio Miranda-Escalada‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2023‎

It is getting increasingly challenging to efficiently exploit drug-related information described in the growing amount of scientific literature. Indeed, for drug-gene/protein interactions, the challenge is even bigger, considering the scattered information sources and types of interactions. However, their systematic, large-scale exploitation is key for developing tools, impacting knowledge fields as diverse as drug design or metabolic pathway research. Previous efforts in the extraction of drug-gene/protein interactions from the literature did not address these scalability and granularity issues. To tackle them, we have organized the DrugProt track at BioCreative VII. In the context of the track, we have released the DrugProt Gold Standard corpus, a collection of 5000 PubMed abstracts, manually annotated with granular drug-gene/protein interactions. We have proposed a novel large-scale track to evaluate the capacity of natural language processing systems to scale to the range of millions of documents, and generate with their predictions a silver standard knowledge graph of 53 993 602 nodes and 19 367 406 edges. Its use exceeds the shared task and points toward pharmacological and biological applications such as drug discovery or continuous database curation. Finally, we have created a persistent evaluation scenario on CodaLab to continuously evaluate new relation extraction systems that may arise. Thirty teams from four continents, which involved 110 people, sent 107 submission runs for the Main DrugProt track, and nine teams submitted 21 runs for the Large Scale DrugProt track. Most participants implemented deep learning approaches based on pretrained transformer-like language models (LMs) such as BERT or BioBERT, reaching precision and recall values as high as 0.9167 and 0.9542 for some relation types. Finally, some initial explorations of the applicability of the knowledge graph have shown its potential to explore the chemical-protein relations described in the literature, or chemical compound-enzyme interactions. Database URL:  https://doi.org/10.5281/zenodo.4955410.


Extraction of human kinase mutations from literature, databases and genotyping studies.

  • Martin Krallinger‎ et al.
  • BMC bioinformatics‎
  • 2009‎

There is a considerable interest in characterizing the biological role of specific protein residue substitutions through mutagenesis experiments. Additionally, recent efforts related to the detection of disease-associated SNPs motivated both the manual annotation, as well as the automatic extraction, of naturally occurring sequence variations from the literature, especially for protein families that play a significant role in signaling processes such as kinases. Systematic integration and comparison of kinase mutation information from multiple sources, covering literature, manual annotation databases and large-scale experiments can result in a more comprehensive view of functional, structural and disease associated aspects of protein sequence variants. Previously published mutation extraction approaches did not sufficiently distinguish between two fundamentally different variation origin categories, namely natural occurring and induced mutations generated through in vitro experiments.


Next generation community assessment of biomedical entity recognition web servers: metrics, performance, interoperability aspects of BeCalm.

  • Martin Pérez-Pérez‎ et al.
  • Journal of cheminformatics‎
  • 2019‎

Shared tasks and community challenges represent key instruments to promote research, collaboration and determine the state of the art of biomedical and chemical text mining technologies. Traditionally, such tasks relied on the comparison of automatically generated results against a so-called Gold Standard dataset of manually labelled textual data, regardless of efficiency and robustness of the underlying implementations. Due to the rapid growth of unstructured data collections, including patent databases and particularly the scientific literature, there is a pressing need to generate, assess and expose robust big data text mining solutions to semantically enrich documents in real time. To address this pressing need, a novel track called "Technical interoperability and performance of annotation servers" was launched under the umbrella of the BioCreative text mining evaluation effort. The aim of this track was to enable the continuous assessment of technical aspects of text annotation web servers, specifically of online biomedical named entity recognition systems of interest for medicinal chemistry applications.


A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer's Disease, Glioblastoma and Lung cancer.

  • Jon Sánchez-Valle‎ et al.
  • Scientific reports‎
  • 2017‎

Epidemiological studies indicate that patients suffering from Alzheimer's disease have a lower risk of developing lung cancer, and suggest a higher risk of developing glioblastoma. Here we explore the molecular scenarios that might underlie direct and inverse co-morbidities between these diseases. Transcriptomic meta-analyses reveal significant numbers of genes with inverse patterns of expression in Alzheimer's disease and lung cancer, and with similar patterns of expression in Alzheimer's disease and glioblastoma. These observations support the existence of molecular substrates that could at least partially account for these direct and inverse co-morbidity relationships. A functional analysis of the sets of deregulated genes points to the immune system, up-regulated in both Alzheimer's disease and glioblastoma, as a potential link between these two diseases. Mitochondrial metabolism is regulated oppositely in Alzheimer's disease and lung cancer, indicating that it may be involved in the inverse co-morbidity between these diseases. Finally, oxidative phosphorylation is a good candidate to play a dual role by decreasing or increasing the risk of lung cancer and glioblastoma in Alzheimer's disease.


ECO-CollecTF: A Corpus of Annotated Evidence-Based Assertions in Biomedical Manuscripts.

  • Elizabeth T Hobbs‎ et al.
  • Frontiers in research metrics and analytics‎
  • 2021‎

Analysis of high-throughput experiments in the life sciences frequently relies upon standardized information about genes, gene products, and other biological entities. To provide this information, expert curators are increasingly relying on text mining tools to identify, extract and harmonize statements from biomedical journal articles that discuss findings of interest. For determining reliability of the statements, curators need the evidence used by the authors to support their assertions. It is important to annotate the evidence directly used by authors to qualify their findings rather than simply annotating mentions of experimental methods without the context of what findings they support. Text mining tools require tuning and adaptation to achieve accurate performance. Many annotated corpora exist to enable developing and tuning text mining tools; however, none currently provides annotations of evidence based on the extensive and widely used Evidence and Conclusion Ontology. We present the ECO-CollecTF corpus, a novel, freely available, biomedical corpus of 84 documents that captures high-quality, evidence-based statements annotated with the Evidence and Conclusion Ontology.


ExTRI: Extraction of transcription regulation interactions from literature.

  • Miguel Vazquez‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2022‎

The regulation of gene transcription by transcription factors is a fundamental biological process, yet the relations between transcription factors (TF) and their target genes (TG) are still only sparsely covered in databases. Text-mining tools can offer broad and complementary solutions to help locate and extract mentions of these biological relationships in articles. We have generated ExTRI, a knowledge graph of TF-TG relationships, by applying a high recall text-mining pipeline to MedLine abstracts identifying over 100,000 candidate sentences with TF-TG relations. Validation procedures indicated that about half of the candidate sentences contain true TF-TG relationships. Post-processing identified 53,000 high confidence sentences containing TF-TG relationships, with a cross-validation F1-score close to 75%. The resulting collection of TF-TG relationships covers 80% of the relations annotated in existing databases. It adds 11,000 other potential interactions, including relationships for ~100 TFs currently not in public TF-TG relation databases. The high confidence abstract sentences contribute 25,000 literature references not available from other resources and offer a wealth of direct pointers to functional aspects of the TF-TG interactions. Our compiled resource encompassing ExTRI together with publicly available resources delivers literature-derived TF-TG interactions for more than 900 of the 1500-1600 proteins considered to function as specific DNA binding TFs. The obtained result can be used by curators, for network analysis and modelling, for causal reasoning or knowledge graph mining approaches, or serve to benchmark text mining strategies.


The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text.

  • Martin Krallinger‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.


FragKB: structural and literature annotation resource of conserved peptide fragments and residues.

  • Ashish V Tendulkar‎ et al.
  • PloS one‎
  • 2010‎

FragKB (Fragment Knowledgebase) is a repository of clusters of structurally similar fragments from proteins. Fragments are annotated with information at the level of sequence, structure and function, integrating biological descriptions derived from multiple existing resources and text mining.


How to link ontologies and protein-protein interactions to literature: text-mining approaches and the BioCreative experience.

  • Martin Krallinger‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2012‎

There is an increasing interest in developing ontologies and controlled vocabularies to improve the efficiency and consistency of manual literature curation, to enable more formal biocuration workflow results and ultimately to improve analysis of biological data. Two ontologies that have been successfully used for this purpose are the Gene Ontology (GO) for annotating aspects of gene products and the Molecular Interaction ontology (PSI-MI) used by databases that archive protein-protein interactions. The examination of protein interactions has proven to be extremely promising for the understanding of cellular processes. Manual mapping of information from the biomedical literature to bio-ontology terms is one of the most challenging components in the curation pipeline. It requires that expert curators interpret the natural language descriptions contained in articles and infer their semantic equivalents in the ontology (controlled vocabulary). Since manual curation is a time-consuming process, there is strong motivation to implement text-mining techniques to automatically extract annotations from free text. A range of text mining strategies has been devised to assist in the automated extraction of biological data. These strategies either recognize technical terms used recurrently in the literature and propose them as candidates for inclusion in ontologies, or retrieve passages that serve as evidential support for annotating an ontology term, e.g. from the PSI-MI or GO controlled vocabularies. Here, we provide a general overview of current text-mining methods to automatically extract annotations of GO and PSI-MI ontology terms in the context of the BioCreative (Critical Assessment of Information Extraction Systems in Biology) challenge. Special emphasis is given to protein-protein interaction data and PSI-MI terms referring to interaction detection methods.


Text mining for the biocuration workflow.

  • Lynette Hirschman‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2012‎

Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.


Text-mining and information-retrieval services for molecular biology.

  • Martin Krallinger‎ et al.
  • Genome biology‎
  • 2005‎

Text-mining in molecular biology -- defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents -- has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators.


Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers.

  • Graciela Gonzalez-Hernandez‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2022‎

Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore 'Challenges in Mining Drug Adverse Reactions'. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.


Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation.

  • Jean-Karim Hériché‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest.


An overview of the BioCreative 2012 Workshop Track III: interactive text mining task.

  • Cecilia N Arighi‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2013‎

In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators' overall experience of a system, regardless of the system's high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: