Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 68 papers

Quantitative measures for the management and comparison of annotated genomes.

  • Karen Eilbeck‎ et al.
  • BMC bioinformatics‎
  • 2009‎

The ever-increasing number of sequenced and annotated genomes has made management of their annotations a significant undertaking, especially for large eukaryotic genomes containing many thousands of genes. Typically, changes in gene and transcript numbers are used to summarize changes from release to release, but these measures say nothing about changes to individual annotations, nor do they provide any means to identify annotations in need of manual review.


Transposable element islands facilitate adaptation to novel environments in an invasive species.

  • Lukas Schrader‎ et al.
  • Nature communications‎
  • 2014‎

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.


Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies.

  • David B Neale‎ et al.
  • Genome biology‎
  • 2014‎

The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.


Gibbon genome and the fast karyotype evolution of small apes.

  • Lucia Carbone‎ et al.
  • Nature‎
  • 2014‎

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome.

  • Pavan Kumar P‎ et al.
  • PLoS genetics‎
  • 2014‎

TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing.


Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling.

  • Steven Flygare‎ et al.
  • Genome biology‎
  • 2016‎

High-throughput sequencing enables unbiased profiling of microbial communities, universal pathogen detection, and host response to infectious diseases. However, computation times and algorithmic inaccuracies have hindered adoption.


MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

  • Carson Holt‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies.


The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

  • Jeramiah J Smith‎ et al.
  • Nature genetics‎
  • 2018‎

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys' unique biology and evolutionary/comparative perspective.


Divergence of the Venom Exogene Repertoire in Two Sister Species of Turriconus.

  • Qing Li‎ et al.
  • Genome biology and evolution‎
  • 2017‎

The genus Conus comprises approximately 700 species of venomous marine cone snails that are highly efficient predators of worms, snails, and fish. In evolutionary terms, cone snails are relatively young with the earliest fossil records occurring in the Lower Eocene, 55 Ma. The rapid radiation of cone snail species has been accompanied by remarkably high rates of toxin diversification. To shed light on the molecular mechanisms that accompany speciation, we investigated the toxin repertoire of two sister species, Conus andremenezi and Conus praecellens, that were until recently considered a single variable species. A total of 196 and 250 toxin sequences were identified in the venom gland transcriptomes of C. andremenezi and C. praecellens belonging to 25 and 29 putative toxin gene superfamilies, respectively. Comparative analysis with closely (Conus tribblei and Conus lenavati) and more distantly related species (Conus geographus) suggests that speciation is associated with significant diversification of individual toxin genes (exogenes) whereas the expression pattern of toxin gene superfamilies within lineages remains largely conserved. Thus, changes within individual toxin sequences can serve as a sensitive indicator for recent speciation whereas changes in the expression pattern of gene superfamilies are likely to reflect more dramatic differences in a species' interaction with its prey, predators, and competitors.


Deep whole-genome sequencing of multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias.

  • Eric L Bogenschutz‎ et al.
  • HGG advances‎
  • 2020‎

The diaphragm is critical for respiration and separation of the thoracic and abdominal cavities, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The genetic etiology of CDH is complex. Single-nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs) in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple individuals and mutated genes are incompletely penetrant. This suggests that multiple genetic variants in combination, other not-yet-investigated classes of variants, and/or nongenetic factors contribute to CDH etiology. However, no studies have comprehensively investigated in affected individuals the contribution of all possible classes of variants throughout the genome to CDH etiology. In our study, we used a unique cohort of four individuals with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood and deep whole-genome sequencing to assess germline and somatic de novo and inherited SNVs, indels, and SVs. In each individual we found a different mutational landscape that included germline de novo and inherited SNVs and indels in multiple genes. We also found in two individuals a 343 bp deletion interrupting an annotated enhancer of the CDH-associated gene GATA4, and we hypothesize that this common SV (found in 1%-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.


The VAAST Variant Prioritizer (VVP): ultrafast, easy to use whole genome variant prioritization tool.

  • Steven Flygare‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Prioritization of sequence variants for diagnosis and discovery of Mendelian diseases is challenging, especially in large collections of whole genome sequences (WGS). Fast, scalable solutions are needed for discovery research, for clinical applications, and for curation of massive public variant repositories such as dbSNP and gnomAD. In response, we have developed VVP, the VAAST Variant Prioritizer. VVP is ultrafast, scales to even the largest variant repositories and genome collections, and its outputs are designed to simplify clinical interpretation of variants of uncertain significance.


The genomic basis of evolutionary differentiation among honey bees.

  • Bertrand Fouks‎ et al.
  • Genome research‎
  • 2021‎

In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.


Common Variation in Cytoskeletal Genes is Associated with Conotruncal Heart Defects.

  • Fadi I Musfee‎ et al.
  • Genes‎
  • 2021‎

There is strong evidence for a genetic contribution to non-syndromic congenital heart defects (CHDs). However, exome- and genome-wide studies conducted at the variant and gene-level have identified few genome-wide significant CHD-related genes. Gene-set analyses are a useful complement to such studies and candidate gene-set analyses of rare variants have provided insight into the genetics of CHDs. However, similar analyses have not been conducted using data on common genetic variants. Consequently, we conducted common variant analyses of 15 CHD candidate gene-sets, using data from two common types of CHDs: conotruncal heart defects (1431 cases) and left ventricular outflow tract defects (509 cases). After Bonferroni correction for evaluation of multiple gene-sets, the cytoskeletal gene-set was significantly associated with conotruncal heart defects (βS = 0.09; 95% confidence interval (CI) 0.03-0.15). This association was stronger when analyses were restricted to the sub-set of cytoskeletal genes that have been observed to harbor rare damaging genotypes in at least two CHD cases (βS = 0.32, 95% CI 0.08-0.56). These findings add to the evidence linking cytoskeletal genes to CHDs and suggest that, for cytoskeletal genes, common variation may contribute to the risk of CHDs.


The history and geographic distribution of a KCNQ1 atrial fibrillation risk allele.

  • Shannon Hateley‎ et al.
  • Nature communications‎
  • 2021‎

The genetic architecture of atrial fibrillation (AF) encompasses low impact, common genetic variants and high impact, rare variants. Here, we characterize a high impact AF-susceptibility allele, KCNQ1 R231H, and describe its transcontinental geographic distribution and history. Induced pluripotent stem cell-derived cardiomyocytes procured from risk allele carriers exhibit abbreviated action potential duration, consistent with a gain-of-function effect. Using identity-by-descent (IBD) networks, we estimate the broad- and fine-scale population ancestry of risk allele carriers and their relatives. Analysis of ancestral migration routes reveals ancestors who inhabited Denmark in the 1700s, migrated to the Northeastern United States in the early 1800s, and traveled across the Midwest to arrive in Utah in the late 1800s. IBD/coalescent-based allele dating analysis reveals a relatively recent origin of the AF risk allele (~5000 years). Thus, our approach broadens the scope of study for disease susceptibility alleles to the context of human migration and ancestral origins.


An artificial intelligence approach for investigating multifactorial pain-related features of endometriosis.

  • Amber C Kiser‎ et al.
  • PloS one‎
  • 2024‎

Endometriosis is a debilitating, chronic disease that is estimated to affect 11% of reproductive-age women. Diagnosis of endometriosis is difficult with diagnostic delays of up to 12 years reported. These delays can negatively impact health and quality of life. Vague, nonspecific symptoms, like pain, with multiple differential diagnoses contribute to the difficulty of diagnosis. By investigating previously imprecise symptoms of pain, we sought to clarify distinct pain symptoms indicative of endometriosis, using an artificial intelligence-based approach. We used data from 473 women undergoing laparoscopy or laparotomy for a variety of surgical indications. Multiple anatomical pain locations were clustered based on the associations across samples to increase the power in the probability calculations. A Bayesian network was developed using pain-related features, subfertility, and diagnoses. Univariable and multivariable analyses were performed by querying the network for the relative risk of a postoperative diagnosis, given the presence of different symptoms. Performance and sensitivity analyses demonstrated the advantages of Bayesian network analysis over traditional statistical techniques. Clustering grouped the 155 anatomical sites of pain into 15 pain locations. After pruning, the final Bayesian network included 18 nodes. The presence of any pain-related feature increased the relative risk of endometriosis (p-value < 0.001). The constellation of chronic pelvic pain, subfertility, and dyspareunia resulted in the greatest increase in the relative risk of endometriosis. The performance and sensitivity analyses demonstrated that the Bayesian network could identify and analyze more significant associations with endometriosis than traditional statistical techniques. Pelvic pain, frequently associated with endometriosis, is a common and vague symptom. Our Bayesian network for the study of pain-related features of endometriosis revealed specific pain locations and pain types that potentially forecast the diagnosis of endometriosis.


In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila.

  • Alex Chapin‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2014‎

Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3' untranslated regions compared with nontargets, suggesting long 3' untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.


Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex.

  • Pavan Kumar P‎ et al.
  • eLife‎
  • 2014‎

Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3.


An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.

  • Catherine A Brownstein‎ et al.
  • Genome biology‎
  • 2014‎

There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.


Antimicrobial Functions of Lactoferrin Promote Genetic Conflicts in Ancient Primates and Modern Humans.

  • Matthew F Barber‎ et al.
  • PLoS genetics‎
  • 2016‎

Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.


The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

  • Ingo Braasch‎ et al.
  • Nature genetics‎
  • 2016‎

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: