Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response.

  • Diana Jurk‎ et al.
  • Aging cell‎
  • 2012‎

In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro-inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence-like state in mature postmitotic neurons in vivo. About 40-80% of Purkinje neurons and 20-40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL-6 production, heterochromatinization and senescence-associated β-galactosidase activity. Frequencies of these senescence-like neurons increased with age. Short-term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late-generation TERC-/- mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late-generation TERC-/-CDKN1A-/- mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence-like phenotype in neurons, as in senescing fibroblasts and other proliferation-competent cells. We conclude that a senescence-like phenotype is possibly not restricted to proliferation-competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence-like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.


Chronic inflammation induces telomere dysfunction and accelerates ageing in mice.

  • Diana Jurk‎ et al.
  • Nature communications‎
  • 2014‎

Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1(-/-) fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1(-/-) tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.


A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

  • Conor Lawless‎ et al.
  • PloS one‎
  • 2012‎

Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.


Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence.

  • Graeme Hewitt‎ et al.
  • Nature communications‎
  • 2012‎

Telomeres are specialized nucleoprotein structures, which protect chromosome ends and have been implicated in the ageing process. Telomere shortening has been shown to contribute to a persistent DNA damage response (DDR) during replicative senescence, the irreversible loss of division potential of somatic cells. Similarly, persistent DDR foci can be found in stress-induced senescence, although their nature is not understood. Here we show, using immuno-fluorescent in situ hybridization and ChIP, that up to half of the DNA damage foci in stress-induced senescence are located at telomeres irrespective of telomerase activity. Moreover, live-cell imaging experiments reveal that all persistent foci are associated with telomeres. Finally, we report an age-dependent increase in frequencies of telomere-associated foci in gut and liver of mice, occurring irrespectively of telomere length. We conclude that telomeres are important targets for stress in vitro and in vivo and this has important consequences for the ageing process.


Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis.

  • Bernadette Carroll‎ et al.
  • Nature communications‎
  • 2018‎

Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival.


Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence.

  • Maria Grazia Vizioli‎ et al.
  • Genes & development‎
  • 2020‎

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues.

  • Dominik Saul‎ et al.
  • Nature communications‎
  • 2022‎

Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.


A chronic wound model to investigate skin cellular senescence.

  • Saranya P Wyles‎ et al.
  • Aging‎
  • 2023‎

Wound healing is an essential physiological process for restoring normal skin structure and function post-injury. The role of cellular senescence, an essentially irreversible cell cycle state in response to damaging stimuli, has emerged as a critical mechanism in wound remodeling. Transiently-induced senescence during tissue remodeling has been shown to be beneficial in the acute wound healing phase. In contrast, persistent senescence, as observed in chronic wounds, contributes to delayed closure. Herein we describe a chronic wound murine model and its cellular senescence profile, including the senescence-associated secretory phenotype.


Determining the feasibility of characterising cellular senescence in human skeletal muscle and exploring associations with muscle morphology and physical function at different ages: findings from the MASS_Lifecourse Study.

  • Leena Habiballa‎ et al.
  • GeroScience‎
  • 2024‎

Cellular senescence may be associated with morphological changes in skeletal muscle and changes in physical function with age although there have been few human studies. We aimed to determine the feasibility of characterising cellular senescence in skeletal muscle and explored sex-specific associations between markers of cellular senescence, muscle morphology, and physical function in participants from the MASS_Lifecourse Study. Senescence markers (p16, TAF (Telomere-Associated DNA Damage Foci), HMGB1 (High Mobility Group Box 1), and Lamin B1) and morphological characteristics (fibre size, number, fibrosis, and centrally nucleated fibres) were assessed in muscle biopsies from 40 men and women (age range 47-84) using spatially-resolved methods (immunohistochemistry, immunofluorescence, and RNA and fluorescence in situ hybridisation). The associations between senescence, morphology, and physical function (muscle strength, mass, and physical performance) at different ages were explored. We found that most senescence markers and morphological characteristics were weakly associated with age in men but more strongly, although non-significantly, associated with age in women. Associations between senescence markers, morphology, and physical function were also stronger in women for HMGB1 and grip strength (r = 0.52); TAF, BMI, and muscle mass (r > 0.4); Lamin B1 and fibrosis (r =  - 0.5); fibre size and muscle mass (r ≥ 0.4); and gait speed (r =  - 0.5). However, these associations were non-significant. In conclusion, we have demonstrated that it is feasible to characterise cellular senescence in human skeletal muscle and to explore associations with morphology and physical function in women and men of different ages. The findings require replication in larger studies.


Cellular senescence drives age-dependent hepatic steatosis.

  • Mikolaj Ogrodnik‎ et al.
  • Nature communications‎
  • 2017‎

The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.


Senolytics improve physical function and increase lifespan in old age.

  • Ming Xu‎ et al.
  • Nature medicine‎
  • 2018‎

Physical function declines in old age, portending disability, increased health expenditures, and mortality. Cellular senescence, leading to tissue dysfunction, may contribute to these consequences of aging, but whether senescence can directly drive age-related pathology and be therapeutically targeted is still unclear. Here we demonstrate that transplanting relatively small numbers of senescent cells into young mice is sufficient to cause persistent physical dysfunction, as well as to spread cellular senescence to host tissues. Transplanting even fewer senescent cells had the same effect in older recipients and was accompanied by reduced survival, indicating the potency of senescent cells in shortening health- and lifespan. The senolytic cocktail, dasatinib plus quercetin, which causes selective elimination of senescent cells, decreased the number of naturally occurring senescent cells and their secretion of frailty-related proinflammatory cytokines in explants of human adipose tissue. Moreover, intermittent oral administration of senolytics to both senescent cell-transplanted young mice and naturally aged mice alleviated physical dysfunction and increased post-treatment survival by 36% while reducing mortality hazard to 65%. Our study provides proof-of-concept evidence that senescent cells can cause physical dysfunction and decreased survival even in young mice, while senolytics can enhance remaining health- and lifespan in old mice.


Adult-onset, short-term dietary restriction reduces cell senescence in mice.

  • Chunfang Wang‎ et al.
  • Aging‎
  • 2010‎

Dietary restriction (DR) extends the lifespan of a wide variety of species and reduces the incidence of major age-related diseases. Cell senescence has been proposed as one causal mechanism for tissue and organism ageing. We show for the first time that adult-onset, short-term DR reduced frequencies of senescent cells in the small intestinal epithelium and liver of mice, which are tissues known to accumulate increased numbers of senescent cells with advancing age. This reduction was associated with improved telomere maintenance without increased telomerase activity. We also found a decrease in cumulative oxidative stress markers in the same compartments despite absence of significant changes in steady-state oxidative stress markers at the whole tissue level. The data suggest the possibility that reduction of cell senescence may be a primary consequence of DR which in turn may explain known effects of DR such as improved mitochondrial function and reduced production of reactive oxygen species.


Local senolysis in aged mice only partially replicates the benefits of systemic senolysis.

  • Joshua N Farr‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Clearance of senescent cells (SnCs) can prevent several age-related pathologies, including bone loss. However, the local versus systemic roles of SnCs in mediating tissue dysfunction remain unclear. Thus, we developed a mouse model (p16-LOX-ATTAC) that allowed for inducible SnC elimination (senolysis) in a cell-specific manner and compared the effects of local versus systemic senolysis during aging using bone as a prototype tissue. Specific removal of Sn osteocytes prevented age-related bone loss at the spine, but not the femur, by improving bone formation without affecting osteoclasts or marrow adipocytes. By contrast, systemic senolysis prevented bone loss at the spine and femur and not only improved bone formation, but also reduced osteoclast and marrow adipocyte numbers. Transplantation of SnCs into the peritoneal cavity of young mice caused bone loss and also induced senescence in distant host osteocytes. Collectively, our findings provide proof-of-concept evidence that local senolysis has health benefits in the context of aging, but, importantly, that local senolysis only partially replicates the benefits of systemic senolysis. Furthermore, we establish that SnCs, through their senescence-associated secretory phenotype (SASP), lead to senescence in distant cells. Therefore, our study indicates that optimizing senolytic drugs may require systemic instead of local SnC targeting to extend healthy aging.


Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis.

  • Mikolaj Ogrodnik‎ et al.
  • Cell metabolism‎
  • 2019‎

Cellular senescence entails a stable cell-cycle arrest and a pro-inflammatory secretory phenotype, which contributes to aging and age-related diseases. Obesity is associated with increased senescent cell burden and neuropsychiatric disorders, including anxiety and depression. To investigate the role of senescence in obesity-related neuropsychiatric dysfunction, we used the INK-ATTAC mouse model, from which p16Ink4a-expressing senescent cells can be eliminated, and senolytic drugs dasatinib and quercetin. We found that obesity results in the accumulation of senescent glial cells in proximity to the lateral ventricle, a region in which adult neurogenesis occurs. Furthermore, senescent glial cells exhibit excessive fat deposits, a phenotype we termed "accumulation of lipids in senescence." Clearing senescent cells from high fat-fed or leptin receptor-deficient obese mice restored neurogenesis and alleviated anxiety-related behavior. Our study provides proof-of-concept evidence that senescent cells are major contributors to obesity-induced anxiety and that senolytics are a potential new therapeutic avenue for treating neuropsychiatric disorders.


Mitochondria are required for pro-ageing features of the senescent phenotype.

  • Clara Correia-Melo‎ et al.
  • The EMBO journal‎
  • 2016‎

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1β-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization.

  • Michael B Stout‎ et al.
  • The journals of gerontology. Series A, Biological sciences and medical sciences‎
  • 2017‎

Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects.


Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans.

  • Yi Zhu‎ et al.
  • EBioMedicine‎
  • 2022‎

α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans.


Telomere dysfunction promotes cholangiocyte senescence and biliary fibrosis in primary sclerosing cholangitis.

  • Nidhi Jalan-Sakrikar‎ et al.
  • JCI insight‎
  • 2023‎

Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as primary sclerosing cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC. Telomere attrition was observed in the bile ducts of patients with PSC along with a reduction in telomerase reverse transcriptase (TERT) expression, compared with that in normal livers. Similarly, liver tissue from mouse models of biliary fibrosis showed telomere attrition with increased damage at telomeres measured as telomere-associated foci (TAF). Cellular models of senescence induction increased the TAF in cholangiocytes. This coincided with decreased TERT expression and increased senescence, which was rescued by modulating TERT levels. Epigenetic analysis revealed increased acquisition of repressive histone methylation at the TERT promoter, which correlated with decreased TERT transcription. Cholangiocyte-selective deletion of TERT in mice exacerbated fibrosis, whereas androgen therapy toward telomerase rescued liver fibrosis and liver function in a genetic mouse model of PSC. Our results demonstrate a mechanistic role for telomere dysfunction in cellular senescence and fibrosis that characterize PSC. This suggests that PSC may be, in part, a telomere biology disorder, and identifies TERT as a potential therapeutic target.


Apoptotic stress causes mtDNA release during senescence and drives the SASP.

  • Stella Victorelli‎ et al.
  • Nature‎
  • 2023‎

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline.

  • Mariana G Tarragó‎ et al.
  • Cell metabolism‎
  • 2018‎

Aging is characterized by the development of metabolic dysfunction and frailty. Recent studies show that a reduction in nicotinamide adenine dinucleotide (NAD+) is a key factor for the development of age-associated metabolic decline. We recently demonstrated that the NADase CD38 has a central role in age-related NAD+ decline. Here we show that a highly potent and specific thiazoloquin(az)olin(on)e CD38 inhibitor, 78c, reverses age-related NAD+ decline and improves several physiological and metabolic parameters of aging, including glucose tolerance, muscle function, exercise capacity, and cardiac function in mouse models of natural and accelerated aging. The physiological effects of 78c depend on tissue NAD+ levels and were reversed by inhibition of NAD+ synthesis. 78c increased NAD+ levels, resulting in activation of pro-longevity and health span-related factors, including sirtuins, AMPK, and PARPs. Furthermore, in animals treated with 78c we observed inhibition of pathways that negatively affect health span, such as mTOR-S6K and ERK, and attenuation of telomere-associated DNA damage, a marker of cellular aging. Together, our results detail a novel pharmacological strategy for prevention and/or reversal of age-related NAD+ decline and subsequent metabolic dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: