Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

  • Bai-Wei Gu‎ et al.
  • PloS one‎
  • 2015‎

Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human patients have so far not shown defects in pseudouridylation or ribosomal RNA processing. None of the mutant iPS cells presented here show decreased pseudouridine levels in rRNA or defective rRNA processing suggesting telomere maintenance defects account for most of the phenotype of X-linked DC. Finally gene expression analysis of the iPS cells shows that WNT signaling is significantly decreased in all mutant cells, raising the possibility that defective WNT signaling may contribute to disease pathogenesis.


Dysregulation of the Transforming Growth Factor β Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia.

  • Jingping Ge‎ et al.
  • PloS one‎
  • 2015‎

Diamond Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome with clinical features of red cell aplasia and variable developmental abnormalities. Most affected patients have heterozygous loss of function mutations in ribosomal protein genes but the pathogenic mechanism is still unknown. We generated induced pluripotent stem cells from DBA patients carrying RPS19 or RPL5 mutations. Transcriptome analysis revealed the striking dysregulation of the transforming growth factor β (TGFβ) signaling pathway in DBA lines. Expression of TGFβ target genes, such as TGFBI, BAMBI, COL3A1 and SERPINE1 was significantly increased in the DBA iPSCs. We quantified intermediates in canonical and non-canonical TGFβ pathways and observed a significant increase in the levels of the non-canonical pathway mediator p-JNK in the DBA iPSCs. Moreover, when the mutant cells were corrected by ectopic expression of WT RPS19 or RPL5, levels of p-JNK returned to normal. Surprisingly, nuclear levels of SMAD4, a mediator of canonical TGFβ signaling, were decreased in DBA cells due to increased proteolytic turnover. We also observed the up-regulation of TGFβ1R, TGFβ2, CDKN1A and SERPINE1 mRNA, and the significant decrease of GATA1 mRNA in the primitive multilineage progenitors. In summary our observations identify for the first time a dysregulation of the TGFβ pathway in the pathobiology of DBA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: