Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Capturing cooperative interactions with the PSI-MI format.

  • Kim Van Roey‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2013‎

The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI-based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology.


Tetrastatin, the NC1 domain of the α4(IV) collagen chain: a novel potent anti-tumor matrikine.

  • Sylvie Brassart-Pasco‎ et al.
  • PloS one‎
  • 2012‎

NC1 domains from α1, α2, α3 and α6(IV) collagen chains were shown to exert anti-tumor or anti-angiogenic activities, whereas the NC1 domain of the α4(IV) chain did not show such activities so far.


MatrixDB: integration of new data with a focus on glycosaminoglycan interactions.

  • Olivier Clerc‎ et al.
  • Nucleic acids research‎
  • 2019‎

MatrixDB (http://matrixdb.univ-lyon1.fr/) is an interaction database focused on biomolecular interactions established by extracellular matrix (ECM) proteins and glycosaminoglycans (GAGs). It is an active member of the International Molecular Exchange (IMEx) consortium (https://www.imexconsortium.org/). It has adopted the HUPO Proteomics Standards Initiative standards for annotating and exchanging interaction data, either at the MIMIx (The Minimum Information about a Molecular Interaction eXperiment) or IMEx level. The following items related to GAGs have been added in the updated version of MatrixDB: (i) cross-references of GAG sequences to the GlyTouCan database, (ii) representation of GAG sequences in different formats (IUPAC and GlycoCT) and as SNFG (Symbol Nomenclature For Glycans) images and (iii) the GAG Builder online tool to build 3D models of GAG sequences from GlycoCT codes. The database schema has been improved to represent n-ary experiments. Gene expression data, imported from Expression Atlas (https://www.ebi.ac.uk/gxa/home), quantitative ECM proteomic datasets (http://matrisomeproject.mit.edu/ecm-atlas), and a new visualization tool of the 3D structures of biomolecules, based on the PDB Component Library and LiteMol, have also been added. A new advanced query interface now allows users to mine MatrixDB data using combinations of criteria, in order to build specific interaction networks related to diseases, biological processes, molecular functions or publications.


Proteomics Standards Initiative at Twenty Years: Current Activities and Future Work.

  • Eric W Deutsch‎ et al.
  • Journal of proteome research‎
  • 2023‎

The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.


Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts.

  • Mays Merjaneh‎ et al.
  • Angiogenesis‎
  • 2017‎

Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel®. The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.


Structural basis of dynamic glycine receptor clustering by gephyrin.

  • Maria Sola‎ et al.
  • The EMBO journal‎
  • 2004‎

Gephyrin is a bi-functional modular protein involved in molybdenum cofactor biosynthesis and in postsynaptic clustering of inhibitory glycine receptors (GlyRs). Here, we show that full-length gephyrin is a trimer and that its proteolysis in vitro causes the spontaneous dimerization of its C-terminal region (gephyrin-E), which binds a GlyR beta-subunit-derived peptide with high and low affinity. The crystal structure of the tetra-domain gephyrin-E in complex with the beta-peptide bound to domain IV indicates how membrane-embedded GlyRs may interact with subsynaptic gephyrin. In vitro, trimeric full-length gephyrin forms a network upon lowering the pH, and this process can be reversed to produce stable full-length dimeric gephyrin. Our data suggest a mechanism by which induced conformational transitions of trimeric gephyrin may generate a reversible postsynaptic scaffold for GlyR recruitment, which allows for dynamic receptor movement in and out of postsynaptic GlyR clusters, and thus for synaptic plasticity.


BioModels: ten-year anniversary.

  • Vijayalakshmi Chelliah‎ et al.
  • Nucleic acids research‎
  • 2015‎

BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140,000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModels' first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges.


Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies.

  • Sylvie Ricard-Blum‎ et al.
  • Seminars in cell & developmental biology‎
  • 2020‎

We review here omics approaches including transcriptomics, proteomics, glycomics, metabolomics and interactomics, databases and computational tools for omic and multi-omic investigations of fibrosis to understand the molecular mechanisms underlying fibrogenesis and fibrosis, to identify biomarkers of diagnosis, prognosis or disease progression, and new therapeutic targets and to design new anti-fibrotic drugs. We also provide perspectives for future studies including lipid and glycosaminoglycan profiling, and the design of virtual patient models as a basis for personalised medicine and virtualisation of drug development.


Heparin-protein interactions: from affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis.

  • Franck Peysselon‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2014‎

Numerous extracellular proteins, growth factors, chemokines, cytokines, enzymes, lipoproteins, involved in a variety of biological processes, interact with heparin and/or heparan sulfate at the cell surface and in the extracellular matrix (ECM). The goal of this study is to investigate the relationship(s) between affinity and kinetics of heparin-protein interactions and the localization of the proteins, their intrinsic disorder and their biological roles. Most proteins bind to heparin with a higher affinity than their fragments and form more stable complexes with heparin than with heparan sulfate. Lipoproteins and matrisome-associated proteins (e.g. growth factors and cytokines) bind to heparin with very high affinity. Matrisome-associated proteins form transient complexes with heparin. However they bind to this glycosaminoglycan with a higher affinity than the proteins of the core matrisome, which contribute to ECM assembly and organization, and than the secreted proteins which are not associated with the ECM. The association rate of proteins with heparin is related to the intrinsic disorder of heparin-binding sites. Enzyme inhibitor activity, protein dimerization, skeletal system development and pathways in cancer are functionally associated with proteins displaying a high or very high affinity for heparin (KD<100 nM). Besides their use in investigating molecular recognition and functions, kinetics and affinity are essential to prioritize interactions in networks and to build network models as discussed for the interaction network established at the surface of endothelial cells by endostatin, a heparin-binding protein regulating angiogenesis.


The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases.

  • Sandra Orchard‎ et al.
  • Nucleic acids research‎
  • 2014‎

IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org).


The Interactome of Cancer-Related Lysyl Oxidase and Lysyl Oxidase-Like Proteins.

  • Sylvain D Vallet‎ et al.
  • Cancers‎
  • 2020‎

The members of the lysyl oxidase (LOX) family are amine oxidases, which initiate the covalent cross-linking of the extracellular matrix (ECM), regulate ECM stiffness, and contribute to cancer progression. The aim of this study was to build the first draft of the interactome of the five members of the LOX family in order to determine its molecular functions, the biological and signaling pathways mediating these functions, the biological processes it is involved in, and if and how it is rewired in cancer. In vitro binding assays, based on surface plasmon resonance and bio-layer interferometry, combined with queries of interaction databases and interaction datasets, were used to retrieve interaction data. The interactome was then analyzed using computational tools. We identified 31 new interactions and 14 new partners of LOXL2, including the α5β1 integrin, and built an interactome comprising 320 proteins, 5 glycosaminoglycans, and 399 interactions. This network participates in ECM organization, degradation and cross-linking, cell-ECM interactions mediated by non-integrin and integrin receptors, protein folding and chaperone activity, organ and blood vessel development, cellular response to stress, and signal transduction. We showed that this network is rewired in colorectal carcinoma, leading to a switch from ECM organization to protein folding and chaperone activity.


A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme.

  • Sylvain D Vallet‎ et al.
  • ACS omega‎
  • 2019‎

Lysyl oxidase (LOX) is a cross-linking enzyme identified 50 years ago, but its 3D structure is still unknown. We have thus built a 3D model of human LOX by homology modeling using the X-ray structure of human lysyl oxidase-like 2 as a template. This model is the first one to recapitulate all known biochemical features of LOX, namely, the coordination of the copper ion and the formation of the lysine tyrosylquinone cofactor and the disulfide bridges. Furthermore, this model is stable during a 1 μs molecular dynamics simulation. The catalytic site is located in a groove surrounded by two loops. The distance between these loops fluctuated during the simulations, which suggests that the groove forms a hinge with a variable opening, which is able to accommodate the various sizes of LOX substrates. This 3D model is a pre-requisite to perform docking experiments with LOX substrates and other partners to identify binding sites and to design new LOX inhibitors specific for therapeutic purpose.


The complex portal--an encyclopaedia of macromolecular complexes.

  • Birgit H M Meldal‎ et al.
  • Nucleic acids research‎
  • 2015‎

The IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.uk/intact/complex), through which protein complexes from major model organisms are being collated and made available for search, viewing and download. It has been built in close collaboration with other bioinformatics services and populated with data from ChEMBL, MatrixDB, PDBe, Reactome and UniProtKB. Each entry contains information about the participating molecules (including small molecules and nucleic acids), their stoichiometry, topology and structural assembly. Complexes are annotated with details about their function, properties and complex-specific Gene Ontology (GO) terms. Consistent nomenclature is used throughout the resource with systematic names, recommended names and a list of synonyms all provided. The use of the Evidence Code Ontology allows us to indicate for which entries direct experimental evidence is available or if the complex has been inferred based on homology or orthology. The data are searchable using standard identifiers, such as UniProt, ChEBI and GO IDs, protein, gene and complex names or synonyms. This reference resource will be maintained and grow to encompass an increasing number of organisms. Input from groups and individuals with specific areas of expertise is welcome.


The IntAct molecular interaction database in 2012.

  • Samuel Kerrien‎ et al.
  • Nucleic acids research‎
  • 2012‎

IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275,000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact.


MELTING, a flexible platform to predict the melting temperatures of nucleic acids.

  • Marine Dumousseau‎ et al.
  • BMC bioinformatics‎
  • 2012‎

Computing accurate nucleic acid melting temperatures has become a crucial step for the efficiency and the optimisation of numerous molecular biology techniques such as in situ hybridization, PCR, antigene targeting, and microarrays. MELTING is a free open source software which computes the enthalpy, entropy and melting temperature of nucleic acids. MELTING 4.2 was able to handle several types of hybridization such as DNA/DNA, RNA/RNA, DNA/RNA and provided corrections to melting temperatures due to the presence of sodium. The program can use either an approximative approach or a more accurate Nearest-Neighbor approach.


A new reference implementation of the PSICQUIC web service.

  • Noemi del-Toro‎ et al.
  • Nucleic acids research‎
  • 2013‎

The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).


Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms.

  • Claudia Umana-Diaz‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2020‎

Lysyl oxidases are major actors of microenvironment and extracellular matrix (ECM) remodeling. These cross-linking enzymes are thus involved in many aspects of physiopathology, including tumor progression, fibrosis and cardiovascular diseases. We have already shown that Lysyl Oxidase-Like 2 (LOXL2) regulates collagen IV deposition by endothelial cells and angiogenesis. We here provide evidence that LOXL2 also affects deposition of other ECM components, including fibronectin, thus altering structural and mechanical properties of the matrix generated by endothelial cells. LOXL2 interacts intracellularly and directly with collagen IV and fibronectin before incorporation into ECM fibrillar structures upon exocytosis, as demonstrated by TIRF time-lapse microscopy. Furthermore, surface plasmon resonance experiments using recombinant scavenger receptor cysteine-rich (SRCR) domains truncated for the catalytic domain demonstrated their direct binding to collagen IV. We thus used directed mutagenesis to investigate the role of LOXL2 catalytic domain. Neither enzyme activity nor catalytic domain were necessary for collagen IV deposition and angiogenesis, whereas the SRCR domains were effective for these processes. Finally, surface coating with recombinant SRCR domains restored deposition of collagen IV by LOXL2-depleted cells. We thus propose that LOXL2 SRCR domains orchestrate scaffolding of the vascular basement membrane and angiogenesis through interactions with collagen IV and fibronectin, independently of the enzymatic cross-linking activity.


MatrixDB, the extracellular matrix interaction database.

  • Emilie Chautard‎ et al.
  • Nucleic acids research‎
  • 2011‎

MatrixDB (http://matrixdb.ibcp.fr) is a freely available database focused on interactions established by extracellular proteins and polysaccharides. Only few databases report protein-polysaccharide interactions and, to the best of our knowledge, there is no other database of extracellular interactions. MatrixDB takes into account the multimeric nature of several extracellular protein families for the curation of interactions, and reports interactions with individual polypeptide chains or with multimers, considered as permanent complexes, when appropriate. MatrixDB is a member of the International Molecular Exchange consortium (IMEx) and has adopted the PSI-MI standards for the curation and the exchange of interaction data. MatrixDB stores experimental data from our laboratory, data from literature curation, data imported from IMEx databases, and data from the Human Protein Reference Database. MatrixDB is focused on mammalian interactions, but aims to integrate interaction datasets of model organisms when available. MatrixDB provides direct links to databases recapitulating mutations in genes encoding extracellular proteins, to UniGene and to the Human Protein Atlas that shows expression and localization of proteins in a large variety of normal human tissues and cells. MatrixDB allows researchers to perform customized queries and to build tissue- and disease-specific interaction networks that can be visualized and analyzed with Cytoscape or Medusa.


Target-derived matricryptins organize cerebellar synapse formation through α3β1 integrins.

  • Jianmin Su‎ et al.
  • Cell reports‎
  • 2012‎

Trans-synaptic organizing cues must be passed between synaptic partners for synapses to properly form. Much of our understanding of this process stems from studies at the neuromuscular junction, where target-derived growth factors, extracellular matrix (ECM) molecules, and matricryptins (proteolytically released fragments of ECM molecules) are all essential for the formation and maintenance of motor nerve terminals. While growth factors and ECM molecules also contribute to the formation of brain synapses, it remains unclear whether synaptic roles exist for matricryptins in the mammalian brain. We report that collagen XVIII and its matricryptin endostatin are generated by cerebellar Purkinje cells and are necessary for the organization of climbing fiber terminals in these neurons. Moreover, endostatin is sufficient to induce climbing fiber terminal formation in vitro by binding and signaling through α3β1 integrins. Taken together, these studies reveal roles for both matricryptins and integrins in the organization of brain synapses.


Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases.

  • Monique Lacroix‎ et al.
  • Scientific reports‎
  • 2017‎

The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: