Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Recurrent evolution of melanism in South American felids.

  • Alexsandra Schneider‎ et al.
  • PLoS genetics‎
  • 2015‎

Morphological variation in natural populations is a genomic test bed for studying the interface between molecular evolution and population genetics, but some of the most interesting questions involve non-model organisms that lack well annotated reference genomes. Many felid species exhibit polymorphism for melanism but the relative roles played by genetic drift, natural selection, and interspecies hybridization remain uncertain. We identify mutations of Agouti signaling protein (ASIP) or the Melanocortin 1 receptor (MC1R) as independent causes of melanism in three closely related South American species: the pampas cat (Leopardus colocolo), the kodkod (Leopardus guigna), and Geoffroy's cat (Leopardus geoffroyi). To assess population level variation in the regions surrounding the causative mutations we apply genomic resources from the domestic cat to carry out clone-based capture and targeted resequencing of 299 kb and 251 kb segments that contain ASIP and MC1R, respectively, from 54 individuals (13-21 per species), achieving enrichment of ~500-2500-fold and ~150x coverage. Our analysis points to unique evolutionary histories for each of the three species, with a strong selective sweep in the pampas cat, a distinctive but short melanism-specific haplotype in the Geoffroy's cat, and reduced nucleotide diversity for both ancestral and melanism-bearing chromosomes in the kodkod. These results reveal an important role for natural selection in a trait of longstanding interest to ecologists, geneticists, and the lay community, and provide a platform for comparative studies of morphological variation in other natural populations.


The domestic cat as a large animal model for characterization of disease and therapeutic intervention in hereditary retinal blindness.

  • Kristina Narfström‎ et al.
  • Journal of ophthalmology‎
  • 2011‎

Large mammals, including canids and felids, are affected by spontaneously occurring hereditary retinal diseases with similarities to those of humans. The large mammal models may be used for thorough clinical characterization of disease processes, understanding the effects of specific mutations, elucidation of disease mechanisms, and for development of therapeutic intervention. Two well-characterized feline models are addressed in this paper. The first model is the autosomal recessive, slowly progressive, late-onset, rod-cone degenerative disease caused by a mutation in the CEP290 gene. The second model addressed in this paper is the autosomal dominant early onset rod cone dysplasia, putatively caused by the mutation found in the CRX gene. Therapeutic trials have been performed mainly in the former type including stem cell therapy, retinal transplantation, and development of ocular prosthetics. Domestic cats, having large human-like eyes with comparable spontaneous retinal diseases, are also considered useful for gene replacement therapy, thus functioning as effective model systems for further research.


A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat.

  • Yasuko Ishida‎ et al.
  • Genomics‎
  • 2006‎

Three proteins have been described in humans and mice as being essential for even distribution, transport, and translocation of pigment granules, with defects in these molecules giving rise to lighter skin/coat color. The dilute phenotype in domestic cats affects both eumelanin and phaeomelanin pigment pathways; for example, black pigmentation combined with dilute appears gray and orange pigments appear cream. The dilute pigmentation segregates as a fully penetrant, autosomal recessive trait. We conducted classical linkage mapping with microsatellites in a large multigeneration pedigree of domestic cats and detected tight linkage for dilute on cat chromosome C1 (theta=0.08, LOD=10.81). Fine-mapping identified a genomic region exhibiting conserved synteny to human chromosome 2, which included one of the three dilute candidate genes, melanophilin (MLPH). Sequence analysis in dilute cats identified a single base pair deletion in exon 2 of MLPH transcripts that introduces a stop codon 11 amino acids downstream, resulting in the truncation of the bulk of the MLPH protein. The occurrence of this homozygous variant in 97 unrelated dilute cats representing 26 cat breeds and random-bred cats, along with 89 unrelated wild-type cats representing 29 breeds and random-bred cats, supports the finding that dilute is caused by this single mutation in MLPH (p<0.00001). Single-nucleotide polymorphism analyses in dilute individuals identified a single haplotype in dilute cats, suggesting that a single mutation event in MLPH gave rise to dilute in domestic cats.


A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

  • Gang Li‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.


Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus.

  • Lois Balmer‎ et al.
  • Genes‎
  • 2020‎

Genetic variants that are associated with susceptibility to type 2 diabetes (T2D) are important for identification of individuals at risk and can provide insights into the molecular basis of disease. Analysis of T2D in domestic animals provides both the opportunity to improve veterinary management and breeding programs as well as to identify novel T2D risk genes. Australian-bred Burmese (ABB) cats have a 4-fold increased incidence of type 2 diabetes (T2D) compared to Burmese cats bred in the United States. This is likely attributable to a genetic founder effect. We investigated this by performing a genome-wide association scan on ABB cats. Four SNPs were associated with the ABB T2D phenotype with p values <0.005. All exons and splice junctions of candidate genes near significant single-nucleotide polymorphisms (SNPs) were sequenced, including the genes DGKG, IFG2BP2, SLC8A1, E2F6, ETV5, TRA2B and LIPH. Six candidate polymorphisms were followed up in a larger cohort of ABB cats with or without T2D and also in Burmese cats bred in America, which exhibit low T2D incidence. The original SNPs were confirmed in this cohort as associated with the T2D phenotype, although no novel coding SNPs in any of the seven candidate genes showed association with T2D. The identification of genetic markers associated with T2D susceptibility in ABB cats will enable preventative health strategies and guide breeding programs to reduce the prevalence of T2D in these cats.


Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats.

  • Victor A David‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2014‎

The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively.


An autosomal genetic linkage map of the domestic cat, Felis silvestris catus.

  • Marilyn Menotti-Raymond‎ et al.
  • Genomics‎
  • 2009‎

We report on the completion of an autosomal genetic linkage (GL) map of the domestic cat (Felis silvestris catus). Unlike two previous linkage maps of the cat constructed with a hybrid pedigree between the domestic cat and the Asian leopard cat, this map was generated entirely with domestic cats, using a large multi-generational pedigree (n=256) maintained by the Nestlé Purina PetCare Company. Four hundred eighty-three simple tandem repeat (STR) loci have been assigned to linkage groups on the cat's 18 autosomes. A single linkage group spans each autosome. The length of the cat map, estimated at 4370 cM, is long relative to most reported mammalian maps. A high degree of concordance in marker order was observed between the third-generation map and the 1.5 Mb-resolution radiation hybrid (RH) map of the cat. Using the cat 1.9x whole-genome sequence, we identified map coordinates for 85% of the loci in the cat assembly, with high concordance observed in marker order between the linkage map and the cat sequence assembly. The present version represents a marked improvement over previous cat linkage maps as it (i) nearly doubles the number of markers that were present in the second-generation linkage map in the cat, (ii) provides a linkage map generated in a domestic cat pedigree which will more accurately reflect recombination distances than previous maps generated in a hybrid pedigree, and (iii) provides single linkage groups spanning each autosome. Marker order was largely consistent between this and the previous maps, though the use of a hybrid pedigree in the earlier versions appears to have contributed to some suppression of recombination. The improved linkage map will provide an added resource for the mapping of phenotypic variation in the domestic cat and the use of this species as a model system for biological research.


Patterns of molecular genetic variation among cat breeds.

  • Marilyn Menotti-Raymond‎ et al.
  • Genomics‎
  • 2008‎

Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.


A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus).

  • Markus H Kuehn‎ et al.
  • PloS one‎
  • 2016‎

The glaucomas are a group of diseases characterized by optic nerve damage that together represent a leading cause of blindness in the human population and in domestic animals. Here we report a mutation in LTBP2 that causes primary congenital glaucoma (PCG) in domestic cats. We identified a spontaneous form of PCG in cats and established a breeding colony segregating for PCG consistent with fully penetrant, autosomal recessive inheritance of the trait. Elevated intraocular pressure, globe enlargement and elongated ciliary processes were consistently observed in all affected cats by 8 weeks of age. Varying degrees of optic nerve damage resulted by 6 months of age. Although subtle lens zonular instability was a common feature in this cohort, pronounced ectopia lentis was identified in less than 10% of cats examined. Thus, glaucoma in this pedigree is attributed to histologically confirmed arrest in the early post-natal development of the aqueous humor outflow pathways in the anterior segment of the eyes of affected animals. Using a candidate gene approach, significant linkage was established on cat chromosome B3 (LOD 18.38, θ = 0.00) using tightly linked short tandem repeat (STR) loci to the candidate gene, LTBP2. A 4 base-pair insertion was identified in exon 8 of LTBP2 in affected individuals that generates a frame shift that completely alters the downstream open reading frame and eliminates functional domains. Thus, we describe the first spontaneous and highly penetrant non-rodent model of PCG identifying a valuable animal model for primary glaucoma that closely resembles the human disease, providing valuable insights into mechanisms underlying the disease and a valuable animal model for testing therapies.


How the leopard hides its spots: ASIP mutations and melanism in wild cats.

  • Alexsandra Schneider‎ et al.
  • PloS one‎
  • 2012‎

The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: