Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Carbonic anhydrase activation is associated with worsened pathological remodeling in human ischemic diabetic cardiomyopathy.

  • Daniele Torella‎ et al.
  • Journal of the American Heart Association‎
  • 2014‎

Diabetes mellitus (DM) has multifactorial detrimental effects on myocardial tissue. Recently, carbonic anhydrases (CAs) have been shown to play a major role in diabetic microangiopathy but their role in the diabetic cardiomyopathy is still unknown.


Development of Cyclic Peptides Targeting the Epidermal Growth Factor Receptor in Mesenchymal Triple-Negative Breast Cancer Subtype.

  • Nancy Nisticò‎ et al.
  • Cells‎
  • 2023‎

Triple-negative breast cancer (TNBC) is an aggressive malignancy characterized by the lack of expression of estrogen and progesterone receptors and amplification of human epidermal growth factor receptor 2 (HER2). Being the Epidermal Growth Factor Receptor (EGFR) highly expressed in mesenchymal TNBC and correlated with aggressive growth behavior, it represents an ideal target for anticancer drugs. Here, we have applied the phage display for selecting two highly specific peptide ligands for targeting the EGFR overexpressed in MDA-MB-231 cells, a human TNBC cell line. Molecular docking predicted the peptide-binding affinities and sites in the extracellular domain of EGFR. The binding of the FITC-conjugated peptides to human and murine TNBC cells was validated by flow cytometry. Confocal microscopy confirmed the peptide binding specificity to EGFR-positive MDA-MB-231 tumor xenograft tissues and their co-localization with the membrane EGFR. Further, the peptide stimulation did not affect the cell cycle of TNBC cells, which is of interest for their utility for tumor targeting. Our data indicate that these novel peptides are highly specific ligands for the EGFR overexpressed in TNBC cells, and thus they could be used in conjugation with nanoparticles for tumor-targeted delivery of anticancer drugs.


c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration.

  • Iolanda Aquila‎ et al.
  • Cell death & disease‎
  • 2019‎

An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kitpos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kitCre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kitCreKI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kitCreKI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kitCreCSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kitCreKIs severely affects CSCs myogenic potential. c-kitCreKI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kitCreKI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kitCreKI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.


Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification.

  • Carla Vicinanza‎ et al.
  • Cell death and differentiation‎
  • 2017‎

Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents ⩽10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1-2% of total c-kitpos myocardial cells, when stimulated with TGF-β/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.


Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells.

  • Eleonora Cianflone‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert pleiotropic effects on cardiac cell biology which are not yet fully understood. Here we tested whether statin treatment affects resident endogenous cardiac stem/progenitor cell (CSC) activation in vitro and in vivo after myocardial infarction (MI). Statins (Rosuvastatin, Simvastatin and Pravastatin) significantly increased CSC expansion in vitro as measured by both BrdU incorporation and cell growth curve. Additionally, statins increased CSC clonal expansion and cardiosphere formation. The effects of statins on CSC growth and differentiation depended on Akt phosphorylation. Twenty-eight days after myocardial infarction by permanent coronary ligation in rats, the number of endogenous CSCs in the infarct border zone was significantly increased by Rosuvastatin-treatment as compared to untreated controls. Additionally, commitment of the activated CSCs into the myogenic lineage (c-kitpos/Gata4pos CSCs) was increased by Rosuvastatin administration. Accordingly, Rosuvastatin fostered new cardiomyocyte formation after MI. Finally, Rosuvastatin treatment reversed the cardiomyogenic defects of CSCs in c-kit haploinsufficient mice, increasing new cardiomyocyte formation by endogenous CSCs in these mice after myocardial infarction. In summary, statins, by sustaining Akt activation, foster CSC growth and differentiation in vitro and in vivo. The activation and differentiation of the endogenous CSC pool and consequent new myocyte formation by statins improve myocardial remodeling after coronary occlusion in rodents. Similar effects might contribute to the beneficial effects of statins on human cardiovascular diseases.


Thermoresponsive M1 macrophage-derived hybrid nanovesicles for improved in vivo tumor targeting.

  • Antonella Barone‎ et al.
  • Drug delivery and translational research‎
  • 2023‎

Despite the efforts and advances done in the last few decades, cancer still remains one of the main leading causes of death worldwide. Nanomedicine and in particular extracellular vesicles are one of the most potent tools to improve the effectiveness of anticancer therapies. In these attempts, the aim of this work is to realize a hybrid nanosystem through the fusion between the M1 macrophages-derived extracellular vesicles (EVs-M1) and thermoresponsive liposomes, in order to obtain a drug delivery system able to exploit the intrinsic tumor targeting capability of immune cells reflected on EVs and thermoresponsiveness of synthetic nanovesicles. The obtained nanocarrier has been physicochemically characterized, and the hybridization process has been validated by cytofluorimetric analysis, while the thermoresponsiveness was in vitro confirmed through the use of a fluorescent probe. Tumor targeting features of hybrid nanovesicles were in vivo investigated on melanoma-induced mice model monitoring the accumulation in tumor site through live imaging and confirmed by cytofluorimetric analysis, showing higher targeting properties of hybrid nanosystem compared to both liposomes and native EVs. These promising results confirmed the ability of this nanosystem to combine the advantages of both nanotechnologies, also highlighting their potential use as effective and safe personalized anticancer nanomedicine.


A Mouse Model of Dilated Cardiomyopathy Produced by Isoproterenol Acute Exposure Followed by 5-Fluorouracil Administration.

  • Nadia Salerno‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2023‎

Appropriate dilated cardiomyopathy (DCM) animal models are highly desirable considering the pathophysiological and clinical heterogeneity of DCM. Genetically modified mice are the most widely and intensively utilized research animals for DCM. However, to translate discoveries from basic science into new and personalized medical applications, research in non-genetically based DCM models remains a key issue. Here, we characterized a mouse model of non-ischemic DCM induced by a stepwise pharmacologic regime of Isoproterenol (ISO) high dose bolus followed by a low dose systemic injection of the chemotherapy agent, 5-Fluorouracil (5-FU). C57BL/6J mice were injected with ISO and, 3 days after, were randomly assigned to saline or 5-FU. Echocardiography and a strain analysis show that ISO + 5FU in mice induces progressive left ventricular (LV) dilation and reduced systolic function, along with diastolic dysfunction and a persistent global cardiac contractility depression through 56 days. While mice treated with ISO alone recover anatomically and functionally, ISO + 5-FU causes persistent cardiomyocyte death, ensuing in cardiomyocyte hypertrophy through 56 days. ISO + 5-FU-dependent damage was accompanied by significant myocardial disarray and fibrosis along with exaggerated oxidative stress, tissue inflammation and premature cell senescence accumulation. In conclusions, a combination of ISO + 5FU produces anatomical, histological and functional cardiac alterations typical of DCM, representing a widely available, affordable, and reproducible mouse model of this cardiomyopathy.


Predominant VH1-69 IgBCR Clones Show Higher Expression of CD5 in Heterogeneous Chronic Lymphocytic Leukemia Populations.

  • Domenico Maisano‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The immunoglobulin B cell receptor (IgBCR) expressed by chronic lymphocytic leukemia (CLL) B cells plays a pivotal role in tumorigenesis, supporting neoplastic transformation, survival, and expansion of tumor clones. We demonstrated that in the same patient, two or more CLL clones could coexist, recognized by the expression of different variable regions of the heavy chain of IgBCR, composing the antigen-binding site. In this regard, phage display screening could be considered the easier and most advantageous methodology for the identification of small peptide molecules able to mimic the natural antigen of the tumor IgBCRs. These molecules, properly functionalized, could be used as a probe to specifically identify and isolate single CLL subpopulations, for a deeper analysis in terms of drug resistance, phenotype, and gene expression. Furthermore, CLL cells express another surface membrane receptor, the CD5, which is commonly expressed by normal T cells. Piece of evidence supports a possible contribution of CD5 to the selection and maintenance of autoreactivity in B cells and the constitutive expression of CD5 on CLL cells could induce pro-survival stimuli. In this brief research report, we describe a peptide-based single-cell sorting using as bait the IgBCR of tumor cells; in the next step, we performed a quantitative analysis of CD5 expression by qRT-PCR related to the expressed IgBCR. Our approach could open a new perspective for the identification, isolation, and investigation of all subsets of IgBCR-related CLL clones, with particular attention to the more aggressive clones.


In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes.

  • Mariangela Scalise‎ et al.
  • Communications biology‎
  • 2021‎

miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.


Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy.

  • Fabiola Marino‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: