Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Tle4 controls both developmental acquisition and early post-natal maturation of corticothalamic projection neuron identity.

  • Maria J Galazo‎ et al.
  • Cell reports‎
  • 2023‎

Identities of distinct neuron subtypes are specified during embryonic development, then maintained during post-natal maturation. In cerebral cortex, mechanisms controlling early acquisition of neuron-subtype identities have become increasingly understood. However, mechanisms controlling neuron-subtype identity stability during post-natal maturation are largely unexplored. We identify that Tle4 is required for both early acquisition and post-natal stability of corticothalamic neuron-subtype identity. Embryonically, Tle4 promotes acquisition of corticothalamic identity and blocks emergence of core characteristics of subcerebral/corticospinal projection neuron identity, including gene expression and connectivity. During the first post-natal week, when corticothalamic innervation is ongoing, Tle4 is required to stabilize corticothalamic neuron identity, limiting interference from differentiation programs of developmentally related neuron classes. We identify a deacetylation-based epigenetic mechanism by which TLE4 controls Fezf2 expression level by corticothalamic neurons. This contributes to distinction of cortical output subtypes and ensures identity stability for appropriate maturation of corticothalamic neurons.


Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity.

  • Maria J Galazo‎ et al.
  • Neuron‎
  • 2016‎

Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity.


Characterization and manipulation of Corticothalamic neurons in associative cortices using Syt6-Cre transgenic mice.

  • Lee O Vaasjo‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

Corticothalamic interactions between associative cortices and higher order thalamic nuclei are involved in high-cognitive functions such as decision-making and working memory. Corticothalamic neurons (CTn) in the prefrontal cortex and other associative areas have been much less studied than their counterparts in the primary sensory areas. The availability of characterized transgenic tools to study CTn in associative areas will facilitate their study and contribute to overcome the scarcity of data about their properties, network dynamics, and contribution to cognitive functions. Here, we characterized the Syt6-Cre (KI148Gsat/Mmud) transgenic mouse line, by tracking expression of a Cre-mediated reporter. In this line, Cre-reporter is strongly expressed in the prefrontal, motor, cingulate, and retrosplenial cortices, as well as in other brain areas including the cerebellum and the olfactory tubercle. Cortical expression starts embryonically and reaches the adult expression pattern by postnatal day 15. In the cortex, Cre-reporter is expressed by layer 6-CTn and by layer 5-CTn to a lesser extent. We quantified Syt6-Cre+ CTn axon varicosities to estimate the distribution and density of putative corticothalamic driver and modulator inputs to thalamic nuclei in the medial, midline, intralaminar, anterior, and motor groups. Also, we characterized the effect of optogenetic stimulation of Syt6-Cre+ neurons in the activity of the prefrontal cortex. CTn stimulation in the prefrontal cortex induces an oscillatory activity in the local field potential that resembles the cortical downstates typically observed during slow-wave sleep or quiet wake.


Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function.

  • K C Rajan‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of Zmiz1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: