Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer.

  • Michelle A T Hildebrandt‎ et al.
  • PloS one‎
  • 2010‎

Treatment of non-small cell lung cancer (NSCLC) with radiotherapy or chemoradiotherapy is often accompanied by the development of esophagitis and pneumonitis. Identifying patients who might be at increased risk for normal tissue toxicity would help in determination of the optimal radiation dose to avoid these events. We profiled 59 single nucleotide polymorphisms (SNPs) from 37 inflammation-related genes in 173 NSCLC patients with stage IIIA/IIIB (dry) disease who were treated with definitive radiation or chemoradiation. For esophagitis risk, nine SNPs were associated with a 1.5- to 4-fold increase in risk, including three PTGS2 (COX2) variants: rs20417 (HR:1.93, 95% CI:1.10-3.39), rs5275 (HR:1.58, 95% CI:1.09-2.27), and rs689470 (HR:3.38, 95% CI:1.09-10.49). Significantly increased risk of pneumonitis was observed for patients with genetic variation in the proinflammatory genes IL1A, IL8, TNF, TNFRSF1B, and MIF. In contrast, NOS3:rs1799983 displayed a protective effect with a 45% reduction in pneumonitis risk (HR:0.55, 95% CI:0.31-0.96). Pneumonitis risk was also modulated by polymorphisms in anti-inflammatory genes, including genetic variation in IL13. rs20541 and rs180925 each resulted in increased risk (HR:2.95, 95% CI:1.14-7.63 and HR:3.23, 95% CI:1.03-10.18, respectively). The cumulative effect of these SNPs on risk was dose-dependent, as evidenced by a significantly increased risk of either toxicity with an increasing number of risk genotypes (P<0.001). These results suggest that genetic variations among inflammation pathway genes may modulate the development of radiation-induced toxicity and, ultimately, help in identifying patients who are at an increased likelihood for such events.


Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis.

  • Zhibin Hu‎ et al.
  • Journal of cancer epidemiology‎
  • 2008‎

Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we genotyped 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in p53, -938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three p53 variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common p53 R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases.


Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans.

  • Sean P David‎ et al.
  • EBioMedicine‎
  • 2016‎

Genome-wide association studies have identified polymorphisms linked to both smoking exposure and risk of lung cancer. The degree to which lung cancer risk is driven by increased smoking, genetics, or gene-environment interactions is not well understood.


Characterization of large structural genetic mosaicism in human autosomes.

  • Mitchell J Machiela‎ et al.
  • American journal of human genetics‎
  • 2015‎

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.


A recurrent mutation in PARK2 is associated with familial lung cancer.

  • Donghai Xiong‎ et al.
  • American journal of human genetics‎
  • 2015‎

PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation.


A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma.

  • Maria Teresa Landi‎ et al.
  • American journal of human genetics‎
  • 2009‎

Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR]=1.23, 95% confidence interval [CI]=1.13-1.33, p=3.02x10(-7)), but not with other histologic types (OR=1.01, p=0.84 and OR=1.00, p=0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR=1.24, 95% CI=1.17-1.31, p=3.74x10(-14) for AD; OR=0.99, p=0.69 and OR=0.97, p=0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma.


From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity.

  • Yunfei Wang‎ et al.
  • DNA repair‎
  • 2003‎

This study correlated the extent of induced in vitro chromosomal damage, assessed by the mutagen sensitivity assay, with genotypes of the X-ray repair cross complementing group 1 (XRCC1) gene, which encodes for a base excision repair protein. There are two common polymorphisms that cause amino acid substitutions in XRCC1, one at codon 194 in exon 6 and another at codon 399 in exon 10. We genotyped these two polymorphisms in 524 healthy subjects and performed mutagen sensitivity assays using both bleomycin and benzo[a]pyrene-diol-epoxide (BPDE) as challenge mutagens. Our results showed that individuals with the wildtype exon 6 Arg/Arg exhibited significantly higher values of chromosomal breaks per cell (b/c) than those with one or two variant Trp alleles (P=0.005 for bleomycin and P=0.05 for BPDE). For the exon 10 polymorphism, subjects who were Gln/Gln homozygotes had higher b/c than did those with other genotypes, with evidence of a gene dosage effect. When we combined the two polymorphic sites and used the exon 6 Arg/Trp and Trp/Trp and exon 10 Arg/Arg genotypes as the reference category, these differences were enhanced for bleomycin sensitivity (P for trend = 0.032), but not for BPDE sensitivity (P for trend = 0.821). These data are biologically plausible since codon 399 is located within the BRCA1 C-terminus functional domain and codon 194 is in the linker region of the XRCC1 N-terminal functional domain. To our knowledge, this is the largest study conducted evaluating the functional relevance of these polymorphisms.


The PhenX Toolkit: get the most from your measures.

  • Carol M Hamilton‎ et al.
  • American journal of epidemiology‎
  • 2011‎

The potential for genome-wide association studies to relate phenotypes to specific genetic variation is greatly increased when data can be combined or compared across multiple studies. To facilitate replication and validation across studies, RTI International (Research Triangle Park, North Carolina) and the National Human Genome Research Institute (Bethesda, Maryland) are collaborating on the consensus measures for Phenotypes and eXposures (PhenX) project. The goal of PhenX is to identify 15 high-priority, well-established, and broadly applicable measures for each of 21 research domains. PhenX measures are selected by working groups of domain experts using a consensus process that includes input from the scientific community. The selected measures are then made freely available to the scientific community via the PhenX Toolkit. Thus, the PhenX Toolkit provides the research community with a core set of high-quality, well-established, low-burden measures intended for use in large-scale genomic studies. PhenX measures will have the most impact when included at the experimental design stage. The PhenX Toolkit also includes links to standards and resources in an effort to facilitate data harmonization to legacy data. Broad acceptance and use of PhenX measures will promote cross-study comparisons to increase statistical power for identifying and replicating variants associated with complex diseases and with gene-gene and gene-environment interactions.


Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

  • Jianxin Shi‎ et al.
  • Nature communications‎
  • 2023‎

Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.


Demographic, psychosocial, and genetic risk associated with smokeless tobacco use among Mexican heritage youth.

  • Anna V Wilkinson‎ et al.
  • BMC medical genetics‎
  • 2015‎

Despite well-established negative health consequences of smokeless tobacco use (STU), the number and variety of alternative non-combustible tobacco products on the market have increased tremendously over the last 10 years, as has the market share of these products relative to cigarettes. While STU among non-Hispanic white youth has decreased over the last 10 years, the prevalence has remained constant among Hispanic youth. Here we examine demographic, psychosocial, and genetic risk associated with STU among Mexican heritage youth.


Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD.

  • Nancy L Saccone‎ et al.
  • PLoS genetics‎
  • 2010‎

Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP) is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking), lung cancer, and chronic obstructive pulmonary disease (COPD). We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers), and 2,614 COPD cases and 3,568 COPD-free controls (all smokers). We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10(-35) and <10(-8) respectively). Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10(-6)). In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10(-20)) and observe a nominally significant association with COPD (p = 0.01); the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765 (and correlates) and smoking that achieves genome-wide significance; these SNPs have previously been associated with mRNA levels of CHRNA5 in brain and lung tissue.


Inflammation-related genetic variations and survival in patients with advanced non-small cell lung cancer receiving first-line chemotherapy.

  • Xia Pu‎ et al.
  • Clinical pharmacology and therapeutics‎
  • 2014‎

Accurate prognostic prediction is challenging for patients with advanced-stage non-small cell lung cancer (NSCLC). We systematically investigated genetic variants within inflammation pathways as potential prognostic markers for advanced-stage NSCLC patients treated with first-line chemotherapy. A discovery phase in 502 patients and an internal validation phase in 335 patients were completed at the MD Anderson Cancer Center. External validation was performed in 371 patients at Harvard University. A missense single-nucleotide polymorphism (SNP) in the gene encoding the major histocompatibility complex class II, DO-β chain (HLA-DOB:rs2071554), predicted to influence protein function, was significantly associated with poor survival in the discovery (hazard ratio (HR): 1.46; 95% confidence interval (CI): 1.02-2.09), internal validation (HR: 1.51; 95% CI: 1.02-2.25), and external validation (HR: 1.52; 95% CI: 1.01-2.29) populations. KLRK1:rs2900420 was associated with reduced risk in the discovery (HR: 0.76; 95% CI: 0.60-0.96), internal validation (HR: 0.77; 95% CI: 0.61-0.99), and external validation (HR: 0.80; 95% CI: 0.63-1.02) populations. A strong cumulative effect on overall survival was observed for these SNPs. Genetic variations in inflammation-related genes could have potential to complement prediction of prognosis.


Genome-wide gene-environment interaction analysis for asbestos exposure in lung cancer susceptibility.

  • Sheng Wei‎ et al.
  • Carcinogenesis‎
  • 2012‎

Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene-environment interactions. To determine gene-asbestos interactions in lung cancer risk, we conducted genome-wide gene-environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10(-6), which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10(-5)). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene-asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.


Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes.

  • Xifeng Wu‎ et al.
  • American journal of human genetics‎
  • 2006‎

The candidate-gene approach in association studies of polygenic diseases has often yielded conflicting results. In this hospital-based case-control study with 696 white patients newly diagnosed with bladder cancer and 629 unaffected white controls, we applied a multigenic approach to examine the associations with bladder cancer risk of a comprehensive panel of 44 selected polymorphisms in two pathways, DNA repair and cell-cycle control, and to evaluate higher-order gene-gene interactions, using classification and regression tree (CART) analysis. Individually, only XPD Asp312Asn, RAG1 Lys820Arg, and a p53 intronic SNP exhibited statistically significant main effects. However, we found a significant gene-dosage effect for increasing numbers of potential high-risk alleles in DNA-repair and cell-cycle pathways separately and combined. For the nucleotide-excision repair pathway, compared with the referent group (fewer than four adverse alleles), individuals with four (odds ratio [OR] = 1.52, 95% CI 1.05-2.20), five to six (OR = 1.81, 95% CI 1.31-2.50), and seven or more adverse alleles (OR = 2.50, 95% CI 1.69-3.70) had increasingly elevated risks of bladder cancer (P for trend <.001). Each additional adverse allele was associated with a 1.21-fold increase in risk (95% CI 1.12-1.29). For the combined analysis of DNA-repair and cell-cycle SNPs, compared with the referent group (<13 adverse alleles), the ORs for individuals with 13-15, 16-17, and >or=18 adverse alleles were 1.22 (95% CI 0.84-1.76), 1.57 (95% CI 1.05-2.35), and 1.77 (95% CI 1.19-2.63), respectively (P for trend = .002). Each additional high-risk allele was associated with a 1.07-fold significant increase in risk. In addition, we found that smoking had a significant multiplicative interaction with SNPs in the combined DNA-repair and cell-cycle-control pathways (P<.01). All genetic effects were evident only in "ever smokers" (persons who had smoked >or=100 cigarettes) and not in "never smokers." A cross-validation statistical method developed in this study confirmed the above observations. CART analysis revealed potential higher-order gene-gene and gene-smoking interactions and categorized a few higher-risk subgroups for bladder cancer. Moreover, subgroups identified with higher cancer risk also exhibited higher levels of induced genetic damage than did subgroups with lower risk. There was a significant trend of higher numbers of bleomycin- and benzo[a]pyrene diol-epoxide (BPDE)-induced chromatid breaks (by mutagen-sensitivity assay) and DNA damage (by comet assay) for individuals in higher-risk subgroups among cases of bladder cancer in smokers. The P for the trend was .0348 for bleomycin-induced chromosome breaks, .0036 for BPDE-induced chromosome breaks, and .0397 for BPDE-induced DNA damage, indicating that these higher-order gene-gene and gene-smoking interactions included SNPs that modulated repair and resulted in diminished DNA-repair capacity. Thus, genotype/phenotype analyses support findings from CART analyses. This is the first comprehensive study to use a multigenic analysis for bladder cancer, and the data suggest that individuals with a higher number of genetic variations in DNA-repair and cell-cycle-control genes are at an increased risk for bladder cancer, confirming the importance of taking a multigenic pathway-based approach to risk assessment.


Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms.

  • Ivan P Gorlov‎ et al.
  • American journal of human genetics‎
  • 2008‎

Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase.


Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

  • James D McKay‎ et al.
  • Nature genetics‎
  • 2017‎

Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.


Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome.

  • Mitchell J Machiela‎ et al.
  • Nature communications‎
  • 2016‎

To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.


IARC monographs: 40 years of evaluating carcinogenic hazards to humans.

  • Neil Pearce‎ et al.
  • Environmental health perspectives‎
  • 2015‎

Recently, the International Agency for Research on Cancer (IARC) Programme for the Evaluation of Carcinogenic Risks to Humans has been criticized for several of its evaluations, and also for the approach used to perform these evaluations. Some critics have claimed that failures of IARC Working Groups to recognize study weaknesses and biases of Working Group members have led to inappropriate classification of a number of agents as carcinogenic to humans.


Comparison of pathway analysis approaches using lung cancer GWAS data sets.

  • Gordon Fehringer‎ et al.
  • PloS one‎
  • 2012‎

Pathway analysis has been proposed as a complement to single SNP analyses in GWAS. This study compared pathway analysis methods using two lung cancer GWAS data sets based on four studies: one a combined data set from Central Europe and Toronto (CETO); the other a combined data set from Germany and MD Anderson (GRMD). We searched the literature for pathway analysis methods that were widely used, representative of other methods, and had available software for performing analysis. We selected the programs EASE, which uses a modified Fishers Exact calculation to test for pathway associations, GenGen (a version of Gene Set Enrichment Analysis (GSEA)), which uses a Kolmogorov-Smirnov-like running sum statistic as the test statistic, and SLAT, which uses a p-value combination approach. We also included a modified version of the SUMSTAT method (mSUMSTAT), which tests for association by averaging χ(2) statistics from genotype association tests. There were nearly 18000 genes available for analysis, following mapping of more than 300,000 SNPs from each data set. These were mapped to 421 GO level 4 gene sets for pathway analysis. Among the methods designed to be robust to biases related to gene size and pathway SNP correlation (GenGen, mSUMSTAT and SLAT), the mSUMSTAT approach identified the most significant pathways (8 in CETO and 1 in GRMD). This included a highly plausible association for the acetylcholine receptor activity pathway in both CETO (FDR≤0.001) and GRMD (FDR = 0.009), although two strong association signals at a single gene cluster (CHRNA3-CHRNA5-CHRNB4) drive this result, complicating its interpretation. Few other replicated associations were found using any of these methods. Difficulty in replicating associations hindered our comparison, but results suggest mSUMSTAT has advantages over the other approaches, and may be a useful pathway analysis tool to use alongside other methods such as the commonly used GSEA (GenGen) approach.


Investigating multiple candidate genes and nutrients in the folate metabolism pathway to detect genetic and nutritional risk factors for lung cancer.

  • Michael D Swartz‎ et al.
  • PloS one‎
  • 2013‎

Folate metabolism, with its importance to DNA repair, provides a promising region for genetic investigation of lung cancer risk. This project investigates genes (MTHFR, MTR, MTRR, CBS, SHMT1, TYMS), folate metabolism related nutrients (B vitamins, methionine, choline, and betaine) and their gene-nutrient interactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: