Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Distinct landscapes of deleterious variants in DNA damage repair system in ethnic human populations.

  • Zixin Qin‎ et al.
  • Life science alliance‎
  • 2022‎

Deleterious variants in DNA damage repair (DDR) system can cause genome instability and increase cancer risk. In this study, we analyzed the deleterious variants in DDR system in 16 ethnic human populations. From the genetic variants in 169 DDR genes involved in nine DDR pathways collected from 158,612 individuals of different ethnic background, we identified 1,781 deleterious variants in 81 DDR genes in eight DDR pathways (https://genemutation.fhs.um.edu.mo/dbddr-global/). Our analysis showed although the quantity of deleterious variants was loaded at a similar level, the landscape of the variants differed substantially among different populations that two-third of the variants were present in single ethnic populations, and the rest was mostly shared between the populations with closer geographic and genetic relationship. The highly ethnic-specific DDR deleterious variation suggests its potential relationship with different disease susceptibility in ethnic human populations.


Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data.

  • Peng Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Although several computational models that predict disease-associated lncRNAs (long non-coding RNAs) exist, only a limited number of disease-associated lncRNAs are known. In this study, we mapped lncRNAs to their functional genomics context using competing endogenous RNAs (ceRNAs) theory. Based on the criteria that similar lncRNAs are likely involved in similar diseases, we proposed a disease lncRNA prioritization method, DisLncPri, to identify novel disease-lncRNA associations. Using a leave-one-out cross validation (LOOCV) strategy, DisLncPri achieved reliable area under curve (AUC) values of 0.89 and 0.87 for the LncRNADisease and Lnc2Cancer datasets that further improved to 0.90 and 0.89 by integrating a multiple rank fusion strategy. We found that DisLncPri had the highest rank enrichment score and AUC value in comparison to several other methods for case studies of alzheimer's disease, ovarian cancer, pancreatic cancer and gastric cancer. Several novel lncRNAs in the top ranks of these diseases were found to be newly verified by relevant databases or reported in recent studies. Prioritization of lncRNAs from a microarray (GSE53622) of oesophageal cancer patients highlighted ENSG00000226029 (top 2), a previously unidentified lncRNA as a potential prognostic biomarker. Our analysis thus indicates that DisLncPri is an excellent tool for identifying lncRNAs that could be novel biomarkers and therapeutic targets in a variety of human diseases.


Ethnic-specificity, evolution origin and deleteriousness of Asian BRCA variation revealed by over 7500 BRCA variants derived from Asian population.

  • Zixin Qin‎ et al.
  • International journal of cancer‎
  • 2023‎

Pathogenic variation in BRCA1 and BRCA2 (BRCA) causes high risk of breast and ovarian cancer, and BRCA variation data are important markers for BRCA-related clinical cancer applications. However, comprehensive BRCA variation data are lacking from the Asian population despite its large population size, heterogenous genetic background and diversified living environment across the Asia continent. We performed a systematic study on BRCA variation in Asian population including extensive data mining, standardization, annotation and characterization. We identified 7587 BRCA variants from 685 592 Asian individuals in 40 Asia countries and regions, including 1762 clinically actionable pathogenic variants and 4915 functionally unknown variants (https://genemutation.fhs.um.edu.mo/Asian-BRCA/). We observed the highly ethnic-specific nature of Asian BRCA variants between Asian and non-Asian populations and within Asian populations, highlighting that the current European descendant population-based BRCA data is inadequate to reflect BRCA variation in the Asian population. We also provided archeological evidence for the evolutionary origin and arising time of Asian BRCA variation. We further provided structural-based evidence for the deleterious variants enriched within the functionally unknown Asian BRCA variants. The data from our study provide a current view of BRCA variation in the Asian population and a rich resource to guide clinical applications of BRCA-related cancer for the Asian population.


Lnc2Meth: a manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease.

  • Hui Zhi‎ et al.
  • Nucleic acids research‎
  • 2018‎

Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases.


CLING: Candidate Cancer-Related lncRNA Prioritization via Integrating Multiple Biological Networks.

  • Jizhou Zhang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Identification and characterization of lncRNAs in cancer with a view to their application in improving diagnosis and therapy remains a major challenge that requires new and innovative approaches. We have developed an integrative framework termed "CLING", aimed to prioritize candidate cancer-related lncRNAs based on their associations with known cancer lncRNAs. CLING focuses on joint optimization and prioritization of all candidates for each cancer type by integrating lncRNA topological properties and multiple lncRNA-centric networks. Validation analyses revealed that CLING is more effective than prioritization based on a single lncRNA network. Reliable AUC (Area Under Curve) scores were obtained across 10 cancer types, ranging from 0.85 to 0.94. Several novel lncRNAs predicted in the top 10 candidates for various cancer types have been confirmed by recent biological experiments. Furthermore, using a case study on liver hepatocellular carcinoma as an example, CLING facilitated the successful identification of novel cancer lncRNAs overlooked by differential expression analyses (DEA). This time- and cost-effective computational model may provide a valuable complement to experimental studies and assist in future investigations on lncRNA involvement in the pathogenesis of cancers. We have developed a web-based server for users to rapidly implement CLING and visualize data, which is freely accessible at http://bio-bigdata.hrbmu.edu.cn/cling/. CLING has been successfully applied to predict a few potential lncRNAs from thousands of candidates for many cancer types.


Immunoglobulin superfamily genes are novel prognostic biomarkers for breast cancer.

  • Yue Li‎ et al.
  • Oncotarget‎
  • 2017‎

Breast cancer progression is associated with dysregulated expression of the immunoglobulin superfamily (IgSF) genes that are involved in cell-cell recognition, binding and adhesion. Despite widespread evidence that many IgSF genes could serve as effective biomarkers, this potential has not been realized because the studies have focused mostly on individual genes and not the entire network. To gain a global perspective of the IgSF-related biomarkers, we constructed an IgSF-directed neighbor network (IDNN) and an IgSF-directed driver network (IDDN) by integrating multiple levels of data, including IgSF genes, breast cancer driver genes, protein-protein interaction (PPI) networks and gene expression profiling data. Our study shows that IgSF genes in the PPI network have important topological features related to cancer. Most IgSF genes are either cancer driver genes themselves or associated with them. We also identified a 21-gene IgSF network module with enriched mutations that are associated with overall survival based on 450 breast cancer patient samples extracted from The Cancer Genome Atlas (TCGA) and multiple independent microarray validation datasets. These results highlight the potential of IgSF genes as novel diagnostic, prognostic and therapeutic targets for breast cancer.


A potential prognostic long non-coding RNA signature to predict metastasis-free survival of breast cancer patients.

  • Jie Sun‎ et al.
  • Scientific reports‎
  • 2015‎

Long non-coding RNAs (lncRNAs) have been implicated in a variety of biological processes, and dysregulated lncRNAs have demonstrated potential roles as biomarkers and therapeutic targets for cancer prognosis and treatment. In this study, by repurposing microarray probes, we analyzed lncRNA expression profiles of 916 breast cancer patients from the Gene Expression Omnibus (GEO). Nine lncRNAs were identified to be significantly associated with metastasis-free survival (MFS) in the training dataset of 254 patients using the Cox proportional hazards regression model. These nine lncRNAs were then combined to form a single prognostic signature for predicting metastatic risk in breast cancer patients that was able to classify patients in the training dataset into high- and low-risk subgroups with significantly different MFSs (median 2.4 years versus 3.0 years, log-rank test p < 0.001). This nine-lncRNA signature was similarly effective for prognosis in a testing dataset and two independent datasets. Further analysis showed that the predictive ability of the signature was independent of clinical variables, including age, ER status, ESR1 status and ERBB2 status. Our results indicated that lncRNA signature could be a useful prognostic marker to predict metastatic risk in breast cancer patients and may improve upon our understanding of the molecular mechanisms underlying breast cancer metastasis.


Genome Instability-Derived Genes Are Novel Prognostic Biomarkers for Triple-Negative Breast Cancer.

  • Maoni Guo‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Triple-negative breast cancer (TNBC) is an aggressive disease. Recent studies have identified genome instability-derived genes for patient outcomes. However, most of the studies mainly focused on only one or a few genome instability-related genes. Prognostic potential and clinical significance of genome instability-associated genes in TNBC have not been well explored.


Prevalence and spectrum of DNA mismatch repair gene variation in the general Chinese population.

  • Li Zhang‎ et al.
  • Journal of medical genetics‎
  • 2022‎

Identifying genetic disease-susceptible individuals through population screening is considered as a promising approach for disease prevention. DNA mismatch repair (MMR) genes including MLH1, MSH2, MSH6 and PMS2 play essential roles in maintaining microsatellite stability through DNA mismatch repair, and pathogenic variation in MMR genes causes microsatellite instability and is the genetic predisposition for cancer as represented by the Lynch syndrome. While the prevalence and spectrum of MMR variation has been extensively studied in cancer, it remains largely elusive in the general population. Lack of the knowledge prevents effective prevention for MMR variation-caused cancer. In the current study, we addressed the issue by using the Chinese population as a model.


A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer.

  • Meng Zhou‎ et al.
  • Journal of translational medicine‎
  • 2015‎

Accumulated evidence suggests that dysregulated expression of long non-coding RNAs (lncRNAs) may play a critical role in tumorigenesis and prognosis of cancer, indicating the potential utility of lncRNAs as cancer prognostic or diagnostic markers. However, the power of lncRNA signatures in predicting the survival of patients with non-small cell lung cancer (NSCLC) has not yet been investigated.


Construction of a lncRNA-mediated feed-forward loop network reveals global topological features and prognostic motifs in human cancers.

  • Shangwei Ning‎ et al.
  • Oncotarget‎
  • 2016‎

Long non-coding RNAs (lncRNAs), transcription factors and microRNAs can form lncRNA-mediated feed-forward loops (L-FFLs), which are functional network motifs that regulate a wide range of biological processes, such as development and carcinogenesis. However, L-FFL network motifs have not been systematically identified, and their roles in human cancers are largely unknown. In this study, we computationally integrated data from multiple sources to construct a global L-FFL network for six types of human cancer and characterized the topological features of the network. Our approach revealed several dysregulated L-FFL motifs common across different cancers or specific to particular cancers. We also found that L-FFL motifs can take part in other types of regulatory networks, such as mRNA-mediated FFLs and ceRNA networks, and form the more complex networks in human cancers. In addition, survival analyses further indicated that L-FFL motifs could potentially serve as prognostic biomarkers. Collectively, this study elucidated the roles of L-FFL motifs in human cancers, which could be beneficial for understanding cancer pathogenesis and treatment.


LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

  • Shangwei Ning‎ et al.
  • Nucleic acids research‎
  • 2017‎

We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases.


Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network.

  • Yan Zhang‎ et al.
  • Molecular oncology‎
  • 2018‎

Differences in individual drug responses are an obstacle to progression in cancer treatment, and predicting responses would help to plan treatment. The accumulation of cancer molecular profiling and drug response data provides opportunities and challenges to identify novel molecular signatures and mechanisms of tumor responsiveness to drugs. This study evaluated drug responses with a competing endogenous RNA (ceRNA) system that depended on competition between diverse RNA species. We identified drug response-related ceRNA (DRCEs) by combining the sequence and expression data of long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA), and the survival data of cancer patients treated with drugs. We constructed a patient-drug two-layer integrated network and used a linear weighting method to predict individual drug responses. DRCEs were found to be significantly enriched in known cancer and drug-associated data resources, involved in biological processes known to mediate drug responses, and correlated to drug activity in cancer cell lines. The dysregulation of DRCE expression influenced drug response-associated functions and pathways, suggesting DRCEs as potential therapeutic targets affecting drug responses. A further case study in breast invasive carcinoma (BRCA) found that DRCE expression was consistent with the drug response pattern and the aberrant expression of the two NEAT1-related DRCEs may lead to poor response to tamoxifen therapy for patients with TP53 mutations. In summary, this study provides a framework for ceRNA-based evaluation of clinical drug responses across multiple cancer types. Understanding the underlying molecular mechanisms of drug responses will allow improved response to chemotherapy and outcomes of cancer treatment.


Coupled Genome-Wide DNA Methylation and Transcription Analysis Identified Rich Biomarkers and Drug Targets in Triple-Negative Breast Cancer.

  • Maoni Guo‎ et al.
  • Cancers‎
  • 2019‎

Triple-negative breast cancer (TNBC) has poor clinical prognosis. Lack of TNBC-specific biomarkers prevents active clinical intervention. We reasoned that TNBC must have its specific signature due to the lack of three key receptors to distinguish TNBC from other types of breast cancer. We also reasoned that coupling methylation and gene expression as a single unit may increase the specificity for the detected TNBC signatures. We further reasoned that choosing the proper controls may be critical to increasing the sensitivity to identify TNBC-specific signatures. Furthermore, we also considered that specific drugs could target the detected TNBC-specific signatures. We developed a system to identify potential TNBC signatures. It consisted of (1) coupling methylation and expression changes in TNBC to identify the methylation-regulated signature genes for TNBC; (2) using TPBC (triple-positive breast cancer) as the control to detect TNBC-specific signature genes; (3) searching in the drug database to identify those targeting TNBC signature genes. Using this system, we identified 114 genes with both altered methylation and expression, and 356 existing drugs targeting 10 of the 114 genes. Through docking and molecular dynamics simulation, we determined the structural basis between sapropterin, a drug used in the treatment of tetrahydrobiopterin deficiency, and PTGS2, a TNBC signature gene involved in the conversion of arachidonic acid to prostaglandins. Our study reveals the existence of rich TNBC-specific signatures, and many can be drug target and biomarker candidates for clinical applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: