Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini.

  • Hui Ouyang‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.


Histone recognition by human malignant brain tumor domains.

  • Nataliya Nady‎ et al.
  • Journal of molecular biology‎
  • 2012‎

Histone methylation has emerged as an important covalent modification involved in a variety of biological processes, especially regulation of transcription and chromatin dynamics. Lysine methylation is found in three distinct states (monomethylation, dimethylation and trimethylation), which are recognized by specific protein domains. The malignant brain tumor (MBT) domain is one such module found in several chromatin regulatory complexes including Polycomb repressive complex 1. Here, we present a comprehensive characterization of the human MBT family with emphasis on histone binding specificity. SPOT-blot peptide arrays were used to screen for the methyllysine-containing histone peptides that bind to MBT domains found in nine human proteins. Selected interactions were quantified using fluorescence polarization assays. We show that all MBT proteins recognize only monomethyllysine and/or dimethyllysine marks and provide evidence that some MBT domains recognize a defined consensus sequence while others bind in a promiscuous, non-sequence-specific manner. Furthermore, using structure-based mutants, we identify a triad of residues in the methyllysine binding pocket that imparts discrimination between monomethyllysine and dimethyllysine. This study represents a comprehensive analysis of MBT substrate specificity, establishing a foundation for the rational design of selective MBT domain inhibitors that may enable elucidation of their role in human biology and disease.


Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition.

  • Levon Halabelian‎ et al.
  • Nature structural & molecular biology‎
  • 2019‎

Embryonic stem cell-specific 5-hydroxymethylcytosine-binding protein (HMCES) can covalently cross-link to abasic sites in single-stranded DNA at stalled replication forks to prevent genome instability. Here, we report crystal structures of the human HMCES SOS response-associated peptidase (SRAP) domain in complex with DNA-damage substrates, including HMCES cross-linked with an abasic site within a 3' overhang DNA. HMCES interacts with both single-strand and duplex segments of DNA, with two independent duplex DNA interaction sites identified in the SRAP domain. The HMCES DNA-protein cross-link structure provides structural insights into a novel thiazolidine covalent interaction between the DNA abasic site and conserved Cys 2 of HMCES. Collectively, our structures demonstrate the capacity for the SRAP domain to interact with a variety of single-strand- and double-strand-containing DNA structures found in DNA-damage sites, including 5' and 3' overhang DNAs and gapped DNAs with short single-strand segments.


Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a.

  • Jianbin Ruan‎ et al.
  • PloS one‎
  • 2012‎

HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been defined for the Cbx3 chromodomain.


Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

  • Nan Zhong‎ et al.
  • PloS one‎
  • 2015‎

We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: