Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies.

  • Jose Bras‎ et al.
  • Human molecular genetics‎
  • 2014‎

Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.


Genetic association of CR1 with Alzheimer's disease: a tentative disease mechanism.

  • Lili-Naz Hazrati‎ et al.
  • Neurobiology of aging‎
  • 2012‎

CR1 is a novel Alzheimer's disease (AD) gene identified by genome-wide association studies (GWAS). Recently, we showed that AD risk could be explained by an 18-kilobase insertion responsible for the complement component (3b/4b) receptor 1 (CR1)-S isoform. We investigated the relevance of the CR1 isoforms to AD in a Canadian dataset. Also, we genotyped rs4844610 tagging the GWAS-significant CR1 single nucleotide polymorphisms. Individuals with F/S genotype had a 1.8 times increased risk for AD compared with F/F genotype (p-adjusted = 0.003), while rs4844610 was only marginally significant (p-adjusted = 0.024). The analyses of brain samples demonstrated that the CR1-S isoform is expressed at lower protein levels than CR1-F (p < 0.0001) hence likely associated with increased complement activation. Intriguingly, our neuropathological results show that the pattern of CR1 expression in neurons is different between the F/F and F/S genotypes (filiform vs. vesicular-like profiles). Furthermore, double labeling studies supported a differential distribution of CR1 in neurons (endoplasmic reticulum intermediate compartment vs. lysosomes). These observations indicate that the CR1-S and CR1-F isoforms could be processed in different ways in neurons. In conclusion, our results support that the CR1-S isoform explains the GWAS signals and open a novel prospect for the investigation of CR1-related disease mechanisms.


Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci.

  • Badri N Vardarajan‎ et al.
  • Annals of neurology‎
  • 2015‎

To detect rare coding variants underlying loci detected by genome-wide association studies (GWAS) of late onset Alzheimer disease (LOAD).


A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers.

  • Ming Zhang‎ et al.
  • Brain : a journal of neurology‎
  • 2018‎

The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy.

  • Huishan Guo‎ et al.
  • Developmental cell‎
  • 2017‎

Autophagy and autophagy-related genes (Atg) have been attributed prominent roles in tumorigenesis, tumor growth, and metastasis. Extracellular vesicles called exosomes are also implicated in cancer metastasis. Here, we demonstrate that exosome production is strongly reduced in cells lacking Atg5 and Atg16L1, but this is independent of Atg7 and canonical autophagy. Atg5 specifically decreases acidification of late endosomes where exosomes are produced, disrupting the acidifying V1V0-ATPase by removing a regulatory component, ATP6V1E1, into exosomes. The effect of Atg5 on exosome production promotes the migration and in vivo metastasis of orthotopic breast cancer cells. These findings uncover mechanisms controlling exosome release and identify means by which autophagy-related genes can contribute to metastasis in autophagy-independent pathways.


A neurotoxic peripherin splice variant in a mouse model of ALS.

  • Janice Robertson‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF proteins in that three peripherin isoforms are generated by alternative splicing. Here, the properties of the peripherin splice variants Per 58, Per 56, and Per 61 have been investigated in transfected cell lines, in primary motor neurons, and in transgenic mice overexpressing peripherin or overexpressing SOD1G37R. Of the three isoforms, Per 61 proved to be distinctly neurotoxic, being assembly incompetent and inducing degeneration of motor neurons in culture. Using isoform-specific antibodies, Per 61 expression was detected in motor neurons of SOD1G37R transgenic mice but not of control or peripherin transgenic mice. The Per 61 antibody also selectively labeled motor neurons and axonal spheroids in two cases of familial ALS and immunoprecipitated a higher molecular mass peripherin species from disease tissue. This evidence suggests that expression of neurotoxic splice variants of peripherin may contribute to the neurodegenerative mechanism in ALS.


Drug Repositioning for Alzheimer's Disease Based on Systematic 'omics' Data Mining.

  • Ming Zhang‎ et al.
  • PloS one‎
  • 2016‎

Traditional drug development for Alzheimer's disease (AD) is costly, time consuming and burdened by a very low success rate. An alternative strategy is drug repositioning, redirecting existing drugs for another disease. The large amount of biological data accumulated to date warrants a comprehensive investigation to better understand AD pathogenesis and facilitate the process of anti-AD drug repositioning. Hence, we generated a list of anti-AD protein targets by analyzing the most recent publically available 'omics' data, including genomics, epigenomics, proteomics and metabolomics data. The information related to AD pathogenesis was obtained from the OMIM and PubMed databases. Drug-target data was extracted from the DrugBank and Therapeutic Target Database. We generated a list of 524 AD-related proteins, 18 of which are targets for 75 existing drugs-novel candidates for repurposing as anti-AD treatments. We developed a ranking algorithm to prioritize the anti-AD targets, which revealed CD33 and MIF as the strongest candidates with seven existing drugs. We also found 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that may be repurposed for treating the cognitive symptoms of AD. The CAD protein and 8 proteins implicated by two 'omics' approaches (ABCA7, APOE, BIN1, PICALM, CELF1, INPP5D, SPON1, and SOD3) might also be promising targets for anti-AD drug development. Our systematic 'omics' mining suggested drugs with novel anti-AD indications, including drugs modulating the immune system or reducing neuroinflammation that are particularly promising for AD intervention. Furthermore, the list of 524 AD-related proteins could be useful not only as potential anti-AD targets but also considered for AD biomarker development.


A comprehensive screening of copy number variability in dementia with Lewy bodies.

  • Celia Kun-Rodrigues‎ et al.
  • Neurobiology of aging‎
  • 2019‎

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Generation of five induced pluripotent stem cells lines from four members of the same family carrying a C9orf72 repeat expansion and one wild-type member.

  • Chiara Lattuada‎ et al.
  • Stem cell research‎
  • 2023‎

The most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) is the expansion of a G4C2 hexanucleotide repeat in the C9orf72 gene. The size of the repeat expansion is highly variable and a cut-off of 30 repeats has been suggested as the lower pathological limit. Repeat size variability has been observed intergenerationally and intraindividually in tissues from different organs and within the same tissue, suggesting instability of the pathological repeat expansion. In order to study this genomic instability, we established iPSCs from five members of the same family of which four carried a C9orf72 repeat expansion and one was wild-type.


Late-onset vs nonmendelian early-onset Alzheimer disease: A distinction without a difference?

  • Christiane Reitz‎ et al.
  • Neurology. Genetics‎
  • 2020‎

There is mounting evidence that only a small fraction of early-onset Alzheimer disease cases (onset <65 years) are explained by known mutations. Even multiplex families with early onset often also have late-onset cases, suggesting that the commonly applied categorization of Alzheimer disease into early- and late-onset forms may not reflect distinct underlying etiology. Nevertheless, this categorization continues to govern today's research and the design of clinical trials. The aim of this review is to evaluate this categorization by providing a comprehensive, critical review of reported clinical, neuropathologic, and genomic characteristics of both onset-based subtypes and explore potential overlap between both categories. The article will lay out the need to comprehensively assess the phenotypic, neuropathologic, and molecular variability in Alzheimer disease and identify factors explaining the observed significant variation in onset age in persons with and without known mutations. The article will critically review ongoing large-scale genomic efforts in Alzheimer disease research (e.g., Alzheimer Disease Sequencing Project, Dominantly Inherited Alzheimer Network, Alzheimer Disease Neuroimaging Initiative) and their shortcomings to disentangle the delineation of unexplained nonmendelian early-onset from late-onset and mendelian forms of Alzheimer disease. In addition, it will outline specific approaches including epigenetic research through which a comprehensive characterization of this delineation can be achieved.


Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease: Evidence From the COURAGE-PD Consortium.

  • Sandeep Grover‎ et al.
  • Neurology‎
  • 2022‎

Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations.


Targeted copy number variant identification across the neurodegenerative disease spectrum.

  • Allison A Dilliott‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2022‎

Although genetic factors are known to contribute to neurodegenerative disease susceptibility, there remains a large amount of heritability unaccounted for across the diagnoses. Copy number variants (CNVs) contribute to these phenotypes, but their presence and influence on disease state remains relatively understudied.


Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach.

  • Naomi P Visanji‎ et al.
  • Journal of Parkinson's disease‎
  • 2022‎

Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed "surgicogenomics".


Combined epigenetic/genetic study identified an ALS age of onset modifier.

  • Ming Zhang‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Age at onset of amyotrophic lateral sclerosis (ALS) is highly variable (eg, 27-74 years in carriers of the G4C2-expansion in C9orf72). It might be influenced by environmental and genetic factors via the modulation of DNA methylation (DNAm) at CpG-sites. Hence, we combined an epigenetic and genetic approach to test the hypothesis that some common single nucleotide polymorphisms (SNPs) at CpG-sites (CpG-SNPs) could modify ALS age of onset. Our genome-wide DNAm analysis suggested three CpG-SNPs whose DNAm levels are significantly associated with age of onset in 249 ALS patients (q < 0.05). Next, genetic analysis validated the association of rs4970944 with age of onset in the discovery (n = 469; P = 0.025) and replication (n = 4160; P = 0.007) ALS cohorts. A meta-analysis of the cohorts combined showed that the median onset in AA-carriers is two years later than in GG-carriers (n = 4629; P = 0.0012). A similar association was observed with its tagging SNPs, implicating a 16 Kb region at the 1q21.3 locus as a modifier of ALS age of onset. Notably, rs4970944 genotypes are also associated with age of onset in C9orf72-carriers (n = 333; P = 0.025), suggesting that each A-allele delays onset by 1.6 years. Analysis of Genotype-Tissue Expression data revealed that the protective A-allele is linked with the reduced expression of CTSS in cerebellum (P = 0.00018), which is a critical brain region in the distributed neural circuits subserving motor control. CTSS encodes cathepsin S protein playing a key role in antigen presentation. In conclusion, we identified a 16 Kb locus tagged by rs4970944 as a modifier of ALS age of onset. Our findings support the role of antigen presenting processes in modulating age of onset of ALS and suggest potential drug targets (eg, CTSS). Future replication studies are encouraged to validate the link between the locus tagged by rs4970944 and age of onset in independent ALS cohorts, including different ethnic groups.


Establishing an online resource to facilitate global collaboration and inclusion of underrepresented populations: Experience from the MJFF Global Genetic Parkinson's Disease Project.

  • Eva-Juliane Vollstedt‎ et al.
  • PloS one‎
  • 2023‎

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion.

  • Zhengrui Xi‎ et al.
  • American journal of human genetics‎
  • 2013‎

The G4C2 repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We tested the hypothesis that the repeat expansion causes aberrant CpG methylation near the G4C2 repeat, which could be responsible for the downregulation of gene expression. We investigated the CpG methylation profile by two methods using genomic DNA from the blood of individuals with ALS (37 expansion carriers and 64 noncarriers), normal controls (n = 76), and family members of 7 ALS probands with the expansion. We report that hypermethylation of the CpG island 5' of the G4C2 repeat is associated with the presence of the expansion (p < 0.0001). A higher degree of methylation was significantly correlated with a shorter disease duration (p < 0.01), associated with familial ALS (p = 0.009) and segregated with the expansion in 7 investigated families. Notably, we did not detect methylation for either normal or intermediate alleles (up to 43 repeats), bringing to question the current cutoff of 30 repeats for pathological alleles. Our study raises several important questions for the future investigation of large data sets, such as whether the degree of methylation corresponds to clinical presentation (ALS versus FTLD).


Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

  • Valentina Escott-Price‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.


Mutation analysis of patients with neurodegenerative disorders using NeuroX array.

  • Mahdi Ghani‎ et al.
  • Neurobiology of aging‎
  • 2015‎

Genetic analyses of patients with neurodegenerative disorders have identified multiple genes that need to be investigated for the presence of damaging variants. However, mutation analysis by Sanger sequencing is costly and time consuming. We tested the utility of a recently designed semi-custom genome-wide array (NeuroX; Illumina, Inc) tailored to study neurodegenerative diseases (e.g., mutation screening). We investigated 192 patients with 4 different neurodegenerative disorders for the presence of rare damaging variations in 77 genes implicated in these diseases. Several causative mutations were identified and confirmed by Sanger sequencing, including PSEN1 p.M233T responsible for Alzheimer's disease in a large Italian family, as well as SOD1 p.A4V and p.I113T in patients with amyotrophic lateral sclerosis. In total, we identified 78 potentially damaging rare variants (frequency <1%), including ABCA7 p.L400V in a family with Alzheimer's disease and LRRK2 p.R1514Q in 6 of 98 patients with Parkinson's disease (6.1%). In conclusion, NeuroX appears to be helpful for rapid and accurate mutation screening, although further development may be still required to improve some current caveats.


Inbreeding among Caribbean Hispanics from the Dominican Republic and its effects on risk of Alzheimer disease.

  • Badri N Vardarajan‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2015‎

Inbreeding can be associated with a modification of disease risk due to excess homozygosity of recessive alleles affecting a wide range of phenotypes. We estimated the inbreeding coefficient in Caribbean Hispanics and examined its effects on risk of late-onset Alzheimer disease.


Drug repositioning for diabetes based on 'omics' data mining.

  • Ming Zhang‎ et al.
  • PloS one‎
  • 2015‎

Drug repositioning has shorter developmental time, lower cost and less safety risk than traditional drug development process. The current study aims to repurpose marketed drugs and clinical candidates for new indications in diabetes treatment by mining clinical 'omics' data. We analyzed data from genome wide association studies (GWAS), proteomics and metabolomics studies and revealed a total of 992 proteins as potential anti-diabetic targets in human. Information on the drugs that target these 992 proteins was retrieved from the Therapeutic Target Database (TTD) and 108 of these proteins are drug targets with drug projects information. Research and preclinical drug targets were excluded and 35 of the 108 proteins were selected as druggable proteins. Among them, five proteins were known targets for treating diabetes. Based on the pathogenesis knowledge gathered from the OMIM and PubMed databases, 12 protein targets of 58 drugs were found to have a new indication for treating diabetes. CMap (connectivity map) was used to compare the gene expression patterns of cells treated by these 58 drugs and that of cells treated by known anti-diabetic drugs or diabetes risk causing compounds. As a result, 9 drugs were found to have the potential to treat diabetes. Among the 9 drugs, 4 drugs (diflunisal, nabumetone, niflumic acid and valdecoxib) targeting COX2 (prostaglandin G/H synthase 2) were repurposed for treating type 1 diabetes, and 2 drugs (phenoxybenzamine and idazoxan) targeting ADRA2A (Alpha-2A adrenergic receptor) had a new indication for treating type 2 diabetes. These findings indicated that 'omics' data mining based drug repositioning is a potentially powerful tool to discover novel anti-diabetic indications from marketed drugs and clinical candidates. Furthermore, the results of our study could be related to other disorders, such as Alzheimer's disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: