Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

  • Toshio Munesue‎ et al.
  • Neuroscience research‎
  • 2010‎

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

  • Shabeesh Balan‎ et al.
  • Molecular autism‎
  • 2014‎

Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD.


Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies.

  • Chie Shimamoto‎ et al.
  • Human molecular genetics‎
  • 2014‎

Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.


Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.

  • Motoko Maekawa‎ et al.
  • Scientific reports‎
  • 2015‎

The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology.


Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism.

  • Katsuhiko Nishimura‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Autism is a severe neurodevelopmental disorder defined by social and communication deficits and ritualistic-repetitive behaviors that are detectable in early childhood. Brain-derived neurotrophic factor (BDNF) plays a critical role in the pathogenesis of autism. In this study, we examined the SNP- and haplotypic-association of BDNF with autism in a trios-based association study (the Autism Genetic Resource Exchange). We also examined the expression of BDNF mRNA in the peripheral blood lymphocytes of drug-naïve autism patients and control subjects. In the TDT of autism trios, the SNP haplotype combinations showed significant associations in the autism group. BDNF expression in the drug-naïve autistic group was found to be significantly higher than in the control group. We suggest that BDNF has a possible role in the pathogenesis of autism through its neurotrophic effects on the serotonergic system.


Chronic diazepam administration increases the expression of Lcn2 in the CNS.

  • Tomonori Furukawa‎ et al.
  • Pharmacology research & perspectives‎
  • 2017‎

Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.


A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain.

  • Shabeesh Balan‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Implantable cardiac pacemaker failure by cumulative dose effects of flattening filter free beams.

  • Kazuhiko Nakamura‎ et al.
  • Journal of radiation research‎
  • 2021‎

Cumulative dose effects, which are one of the main causes of errors that occur when an implantable cardiac pacemaker (ICP) is irradiated with ionizing radiation, induce permanent failure in ICPs. Although flattening filter free (FFF) beams, which are often used in stereotactic radiotherapy, are known to have different characteristics from conventional (with flattening filter [WFF]) beams, the cumulative dose effects on ICPs with FFF beams have been under-investigated. This study investigates ICP failure induced by cumulative dose effects of FFF beams. When the ICP placed in the center of the irradiation field was irradiated with 10 MV-FFF at 24 Gy/min, the cumulative dose at which failure occurred was evaluated on the basis of the failure criteria associated with high cumulative dose as described in the American Association of Physicists in Medicine Task Group 203. The ICP failures such as a mild battery depletion at a cumulative dose of 10 Gy, pacing-output voltage change >25% at a cumulative dose of 122 Gy, and the loss of telemetry capability at cumulative dose 134 Gy were induced by cumulative dose effects. The cumulative doses by which the cumulative dose effects of FFF beams induced ICP failure were not very different from those reported in previous studies with WFF beams. Therefore, radiotherapy with FFF beams (and WFF beams) for patients with ICP requires appropriate management for minimizing the cumulative dose effects.


Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport.

  • Shogo Yoshihara‎ et al.
  • Cell reports‎
  • 2021‎

In schizophrenia (SCZ), neurons in the brain tend to undergo gross morphological changes, but the related molecular mechanism remains largely elusive. Using Kif3b+/- mice as a model with SCZ-like behaviors, we found that a high-betaine diet can significantly alleviate schizophrenic traits related to neuronal morphogenesis and behaviors. According to a deficiency in the transport of collapsin response mediator protein 2 (CRMP2) by the KIF3 motor, we identified a significant reduction in lamellipodial dynamics in developing Kif3b+/- neurons as a cause of neurite hyperbranching. Betaine administration significantly decreases CRMP2 carbonylation, which enhances the F-actin bundling needed for proper lamellipodial dynamics and microtubule exclusion and may thus functionally compensate for KIF3 deficiency. Because the KIF3 expression levels tend to be downregulated in the human prefrontal cortex of the postmortem brains of SCZ patients, this mechanism may partly participate in human SCZ pathogenesis, which we hypothesize could be alleviated by betaine administration.


The factor structure and construct validity of the parent-reported Inventory of Callous-Unemotional Traits among school-aged children and adolescents.

  • Satomi Yoshida‎ et al.
  • PloS one‎
  • 2019‎

In this study, we assessed the factor structure and construct validity of the parent-reported Inventory of Callous-Unemotional Traits (ICU) among school-aged children and adolescents, aged 6 to 15 years, in a community setting in Japan (n = 10,936). We investigated 15 models that have been reported in previous studies and used confirmatory factor analyses to determine a model that might actually be the best-fit among these. We then examined the correlations between the score of ICU and the Strengths and Difficulties Questionnaire (SDQ) in the best fit model and the three-factor bifactor (3FBF) model with the original ICU through cross-sectional and longitudinal analysis to determine the concurrent and predictive validity of the ICU. The results showed that the best-fit model was the two-factor bifactor (2FBF) model with a revised version of the ICU with 12 items, excluding all but one item of unemotional factors. The cross-sectional and longitudinal analysis showed that higher general callous-unemotional factor scores, callousness and uncaring specific factor scores were significantly associated with a higher level of conduct problems and a lower level of prosocial behaviors in the SDQ. These tendencies were shown both in the 2FBF model with the revised version of the ICU and the 3FBF model with the original ICU. We conclude that the 2FBF model was useful for school-aged community samples, as it predicts increases in conduct problems and decreases in prosocial behavior with fewer items than the 3FBF model.


Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance.

  • Takatoshi Chinen‎ et al.
  • Nature communications‎
  • 2011‎

Interleukin 10 (IL-10) and regulatory T cells (Tregs) maintain tolerance to intestinal microorganisms. However, Il10(-/-)Rag2(-/-) mice, which lack IL-10 and Tregs, remain healthy, suggesting the existence of other mechanisms of tolerance. Here, we identify suppressor of cytokine signalling 1 (SOCS1) as an essential mediator of immune tolerance in the intestine. Socs1(-/-)Rag2(-/-) mice develop severe colitis, which can be prevented by the reduction of microbiota and the transfer of IL-10-sufficient Tregs. Additionally, we find an essential role for prostaglandin E2 (PGE2) in the maintenance of tolerance within the intestine in the absence of Tregs. Socs1(-/-) dendritic cells are resistant to PGE2-mediated immunosuppression because of dysregulated cytokine signalling. Thus, we propose that SOCS1 and PGE2, potentially interacting together, act as an alternative intestinal tolerance mechanism distinct from IL-10 and Tregs.


Lack of association of EGR2 variants with bipolar disorder in Japanese population.

  • Shabeesh Balan‎ et al.
  • Gene‎
  • 2013‎

The early growth response gene 2 (EGR2) has been recently reported to be associated with bipolar disorder in the Korean population. However replication studies in independent cohorts of same and different ethnicities are essential for establishing the credibility of a genotype-phenotype association. With this notion, in the present study we have performed a replication study of the reported association of SNPs in EGR2 in a case-control study comprising of 867 unrelated Japanese bipolar disorder patients and 895 age-, sex- and ethnicity-matched controls. Results showed no significant differences in allele and genotype frequencies of EGR2 SNPs between bipolar disorder patients and controls and also in a sex-stratified genetic analysis. The haplotype and meta-analyses also showed no significant association with bipolar disorder. In conclusion, this is the first replication study of the previously reported association of EGR2 with bipolar disorder in a larger sample set and the results showed that the EGR2 gene is unlikely to contribute to the susceptibility of bipolar disorder in a Japanese cohort.


Involvement of interleukin-17A-induced hypercontractility of intestinal smooth muscle cells in persistent gut motor dysfunction.

  • Hirotada Akiho‎ et al.
  • PloS one‎
  • 2014‎

The etiology of post-inflammatory gastrointestinal (GI) motility dysfunction, after resolution of acute symptoms of inflammatory bowel diseases (IBD) and intestinal infection, is largely unknown, however, a possible involvement of T cells is suggested.


Vldlr overexpression causes hyperactivity in rats.

  • Keiko Iwata‎ et al.
  • Molecular autism‎
  • 2012‎

Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients.


Further evidence for the role of MET in autism susceptibility.

  • Ismail Thanseem‎ et al.
  • Neuroscience research‎
  • 2010‎

MET receptor tyrosine kinase (MET)-mediated signaling has been implicated in multiple aspects of neocortical and cerebellar neuronal growth and maturation. A promoter functional SNP (rs1858830) that disrupts the transcription of MET has been reported to be strongly associated with autism spectrum disorders (ASD) in the Caucasian population. Here, we performed a trio association study of MET with ASD in Japanese subjects (n=126 trios). Based on the HapMap data on the Japanese population, 15 SNPs were chosen for the association study. One SNP located in intron 1, rs38841, showed a nominal association with autism (p=0.044; OR=1.61) when analyzed using the transmission disequilibrium test. To the best of our knowledge, this is the first replication study of the association of MET with autism, in any non-Caucasian population. Association of rs38841 with autism was further confirmed in 252 Caucasian trios from AGRE (p=0.0006). An interesting observation is that all three SNPs of MET (rs1858830, rs38845 and rs38841) shown to be associated with autism in three independent studies including the present one, are located towards the 5'end of the gene at a span of 9.4 kb. Our results provide further evidence for a possible role of MET in the pathogenesis of ASD.


Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.

  • Manabu Toyoshima‎ et al.
  • Developmental biology‎
  • 2009‎

Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.


SNP analyses of growth factor genes EGF, TGFbeta-1, and HGF reveal haplotypic association of EGF with autism.

  • Takao Toyoda‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-beta (TGFbeta) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFbeta1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFbeta1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.


Linkage disequilibrium analysis of the CHRNA7 gene and its partially duplicated region in schizophrenia.

  • Yasuhide Iwata‎ et al.
  • Neuroscience research‎
  • 2007‎

Several previous studies have reported a significant linkage between markers in the alpha 7 nicotinic cholinergic receptor subunit (CHRNA7) gene and either schizophrenia or the P50 sensory gating deficit, a schizophrenia endophenotype. However, CHRFAM7A, a partially duplicated gene 1.6Mb upstream of the CHRNA7 gene, has complicated further genetic analysis. We genotyped 14 polymorphic markers throughout the full-length CHRNA7 gene and the duplicated region in 188 unrelated Han Chinese patients with schizophrenia and 188 controls. The duplicated regions were assessed by genotyping up- and down-stream polymorphic markers in the vicinity of each region and analyzing the linkage disequilibrium (LD) between each pair of markers. No evidence of risk variants for schizophrenia in either the CHRNA7 gene or the partially duplicated region was found in the LD analysis. A significant deviation from the Hardy-Weinberg equilibrium (HWE) was found only in the genotypic distribution of SNP9 (IVS4-1912) in patients (p=0.00829), but not in controls. In conclusion, our LD analysis did not reveal any association between schizophrenia in our Han Chinese population and the CHRNA7 gene or its partially duplicated region. However, we could not exclude the possibility of a weak genetic effect due to the small sample size. Analyses of larger samples and higher-density markers, particularly around SNP9 (IVS4-1912), are still needed.


Effect of X-ray dose rates higher than 8 Gy/min on the functioning of cardiac implantable electronic devices.

  • Kazuhiko Nakamura‎ et al.
  • Journal of radiation research‎
  • 2020‎

Direct irradiation may cause malfunctioning of cardiac implantable electronic devices (CIEDs). Therefore, a treatment plan that does not involve direct irradiation of CIEDs should be formulated. However, CIEDs may be directly exposed to radiation because of the sudden intrafractional movement of the patient. The probability of CIED malfunction reportedly depends on the dose rate; however, reports are only limited to dose rates ≤8 Gy/min. The purpose of this study was to investigate the effect of X-ray dose rates >8 Gy/min on CIED function. Four CIEDs were placed at the center of the radiation field and irradiated using 6 MV X-ray with flattening filter free (6 MV FFF) and 10 MV X-ray with flattening filter free (10 MV FFF). The dose rate was 4-14 Gy/min for the 6 MV FFF and 4-24 Gy/min for 10 MV FFF beams. CIED operation was evaluated with an electrocardiogram during each irradiation. Three CIEDs malfunctioned in the 6 MV FFF condition, and all four CIEDs malfunctioned in the 10 MV FFF condition, when the dose rate was >8 Gy/min. Pacing inhibition was the malfunction observed in all four CIEDs. Malfunction occurred simultaneously along with irradiation and simultaneously returned to normal function on stopping the irradiation. An X-ray dose rate >8 Gy/min caused a temporary malfunction due to interference. Therefore, clinicians should be aware of the risk of malfunction and manage patient movement when an X-ray dose rate >8 Gy/min is used for patients with CIEDs.


Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons.

  • Tomonori Hara‎ et al.
  • Translational psychiatry‎
  • 2021‎

Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: