Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

A univocal definition of the neuronal soma morphology using Gaussian mixture models.

  • Sergio Luengo-Sanchez‎ et al.
  • Frontiers in neuroanatomy‎
  • 2015‎

The definition of the soma is fuzzy, as there is no clear line demarcating the soma of the labeled neurons and the origin of the dendrites and axon. Thus, the morphometric analysis of the neuronal soma is highly subjective. In this paper, we provide a mathematical definition and an automatic segmentation method to delimit the neuronal soma. We applied this method to the characterization of pyramidal cells, which are the most abundant neurons in the cerebral cortex. Since there are no benchmarks with which to compare the proposed procedure, we validated the goodness of this automatic segmentation method against manual segmentation by neuroanatomists to set up a framework for comparison. We concluded that there were no significant differences between automatically and manually segmented somata, i.e., the proposed procedure segments the neurons similarly to how a neuroanatomist does. It also provides univocal, justifiable and objective cutoffs. Thus, this study is a means of characterizing pyramidal neurons in order to objectively compare the morphometry of the somata of these neurons in different cortical areas and species.


PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits.

  • Matthew J Broadhead‎ et al.
  • Scientific reports‎
  • 2016‎

The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM). Large-scale analysis of ~100,000 synapses in 7 hippocampal sub-regions revealed they comprised discrete PSD95 nanoclusters that were spatially organised into single and multi-nanocluster PSDs. Synapses in different sub-regions, cell-types and locations along the dendritic tree of CA1 pyramidal neurons, showed diversity characterised by the number of nanoclusters per synapse. Multi-nanocluster synapses were frequently found in the CA3 and dentate gyrus sub-regions, corresponding to large thorny excrescence synapses. Although the structure of individual nanoclusters remained relatively conserved across all sub-regions, PSD95 packing into nanoclusters also varied between sub-regions determined from nanocluster fluorescence intensity. These data identify PSD95 nanoclusters as a basic structural unit, or building block, of excitatory synapses and their number characterizes synapse size and structural diversity.


MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images.

  • Gherardo Varando‎ et al.
  • Frontiers in neuroanatomy‎
  • 2018‎

The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections.


Architecture of the Mouse Brain Synaptome.

  • Fei Zhu‎ et al.
  • Neuron‎
  • 2018‎

Synapses are found in vast numbers in the brain and contain complex proteomes. We developed genetic labeling and imaging methods to examine synaptic proteins in individual excitatory synapses across all regions of the mouse brain. Synapse catalogs were generated from the molecular and morphological features of a billion synapses. Each synapse subtype showed a unique anatomical distribution, and each brain region showed a distinct signature of synapse subtypes. Whole-brain synaptome cartography revealed spatial architecture from dendritic to global systems levels and previously unknown anatomical features. Synaptome mapping of circuits showed correspondence between synapse diversity and structural and functional connectomes. Behaviorally relevant patterns of neuronal activity trigger spatiotemporal postsynaptic responses sensitive to the structure of synaptome maps. Areas controlling higher cognitive function contain the greatest synapse diversity, and mutations causing cognitive disorders reorganized synaptome maps. Synaptome technology and resources have wide-ranging application in studies of the normal and diseased brain.


The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease.

  • Paula Merino-Serrais‎ et al.
  • Brain : a journal of neurology‎
  • 2013‎

The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer's disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer's disease is likely to depend on the relative number of neurons that have well developed tangles.


Neuronize: a tool for building realistic neuronal cell morphologies.

  • Juan P Brito‎ et al.
  • Frontiers in neuroanatomy‎
  • 2013‎

This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.


Neuronize v2: Bridging the Gap Between Existing Proprietary Tools to Optimize Neuroscientific Workflows.

  • Ivan Velasco‎ et al.
  • Frontiers in neuroanatomy‎
  • 2020‎

Knowledge about neuron morphology is key to understanding brain structure and function. There are a variety of software tools that are used to segment and trace the neuron morphology. However, these tools usually utilize proprietary formats. This causes interoperability problems since the information extracted with one tool cannot be used in other tools. This article aims to improve neuronal reconstruction workflows by facilitating the interoperability between two of the most commonly used software tools-Neurolucida (NL) and Imaris (Filament Tracer). The new functionality has been included in an existing tool-Neuronize-giving rise to its second version. Neuronize v2 makes it possible to automatically use the data extracted with Imaris Filament Tracer to generate a tracing with dendritic spine information that can be read directly by NL. It also includes some other new features, such as the ability to unify and/or correct inaccurately-formed meshes (i.e., dendritic spines) and to calculate new metrics. This tool greatly facilitates the process of neuronal reconstruction, bridging the gap between existing proprietary tools to optimize neuroscientific workflows.


Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

  • Laura Anton-Sanchez‎ et al.
  • Neuroinformatics‎
  • 2016‎

The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.


Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

  • Concha Bielza‎ et al.
  • Scientific reports‎
  • 2014‎

Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.


Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor.

  • Anders Bach‎ et al.
  • Neuropharmacology‎
  • 2019‎

Inhibition of postsynaptic density protein-95 (PSD-95) decouples N-methyl-d-aspartate (NMDA) receptor downstream signaling and results in neuroprotection after focal cerebral ischemia. We have previously developed UCCB01-144, a dimeric PSD-95 inhibitor, which binds PSD-95 with high affinity and is neuroprotective in experimental stroke. Here, we investigate the selectivity, efficacy and toxicity of UCCB01-144 and compare with the monomeric drug candidate Tat-NR2B9c. Fluorescence polarization using purified proteins and pull-downs of mouse brain lysates showed that UCCB01-144 potently binds all four PSD-95-like membrane-associated guanylate kinases (MAGUKs). In addition, UCCB01-144 affected NMDA receptor signaling pathways in ischemic brain tissue. UCCB01-144 reduced infarct size in young and aged male mice at various doses when administered 30 min after permanent middle cerebral artery occlusion, but UCCB01-144 was not effective in young male mice when administered 1 h post-ischemia or in female mice. Furthermore, UCCB01-144 was neuroprotective in a transient stroke model in rats, and in contrast to Tat-NR2B9c, high dose of UCCB01-144 did not lead to significant changes in mean arterial blood pressure or heart rate. Overall, UCCB01-144 is a potent MAGUK inhibitor that reduces neurotoxic PSD-95-mediated signaling and improves neuronal survival following focal brain ischemia in rodents under various conditions and without causing cardiovascular side effects, which encourages further studies towards clinical stroke trials.


A Method for the Symbolic Representation of Neurons.

  • Jose Juan Aliaga Maraver‎ et al.
  • Frontiers in neuroanatomy‎
  • 2018‎

The field of neuroanatomy has progressed considerably in recent decades, thanks to the emergence of novel methods which provide new insights into the organization of the nervous system. These new methods have produced a wealth of data that needs to be analyzed, shifting the bottleneck from the acquisition to the analysis of data. In other disciplines, such as in many engineering areas, scientists and engineers are dealing with increasingly complex systems, using hierarchical decompositions, graphical models and simplified schematic diagrams for analysis and design processes. This approach makes it possible for users to simultaneously combine global system views and very detailed representations of specific areas of interest, by selecting appropriate representations for each of these views. In this way, users can concentrate on specific details while also maintaining a general system overview - a capability that is essential for understanding structure and function whenever complexity is an issue. Following this approach, this paper focuses on a graphical tool designed to help neuroanatomists to better understand and detect morphological characteristics of neuronal cells. The method presented here, based on a symbolic representation that can be tailored to enhance a particular range of features of a neuron or neuron set, has proven to be useful for highlighting particular geometries that may be hidden due to the complexity of the analysis tasks and the richness of neuronal morphologies. A software tool has been developed to generate graphical representations of neurons from 3D computer-aided reconstruction files.


Comparing basal dendrite branches in human and mouse hippocampal CA1 pyramidal neurons with Bayesian networks.

  • Bojan Mihaljević‎ et al.
  • Scientific reports‎
  • 2020‎

Pyramidal neurons are the most common cell type in the cerebral cortex. Understanding how they differ between species is a key challenge in neuroscience. A recent study provided a unique set of human and mouse pyramidal neurons of the CA1 region of the hippocampus, and used it to compare the morphology of apical and basal dendritic branches of the two species. The study found inter-species differences in the magnitude of the morphometrics and similarities regarding their variation with respect to morphological determinants such as branch type and branch order. We use the same data set to perform additional comparisons of basal dendrites. In order to isolate the heterogeneity due to intrinsic differences between species from the heterogeneity due to differences in morphological determinants, we fit multivariate models over the morphometrics and the determinants. In particular, we use conditional linear Gaussian Bayesian networks, which provide a concise graphical representation of the independencies and correlations among the variables. We also extend the previous study by considering additional morphometrics and by formally testing whether a morphometric increases or decreases with the distance from the soma. This study introduces a multivariate methodology for inter-species comparison of morphology.


Suppression of Proliferation of Human Glioblastoma Cells by Combined Phosphodiesterase and Multidrug Resistance-Associated Protein 1 Inhibition.

  • Liliya Kopanitsa‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic agents, thereby providing a new combination therapy for this challenging malignancy.


Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.

  • Bojan Mihaljević‎ et al.
  • Frontiers in computational neuroscience‎
  • 2014‎

Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.


Strong and reliable synaptic communication between pyramidal neurons in adult human cerebral cortex.

  • Sarah Hunt‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2023‎

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Structural Analysis of Human and Mouse Dendritic Spines Reveals a Morphological Continuum and Differences across Ages and Species.

  • Netanel Ofer‎ et al.
  • eNeuro‎
  • 2022‎

Dendritic spines have diverse morphologies, with a wide range of head and neck sizes, and these morphologic differences likely generate different functional properties. To explore how this morphologic diversity differs across species and ages we analyzed 3D confocal reconstructions of ∼8000 human spines and ∼1700 mouse spines, labeled by intracellular injections in fixed tissue. Using unsupervised algorithms, we computationally separated spine heads and necks and systematically measured morphologic features of spines in apical and basal dendrites from cortical pyramidal cells. Human spines had unimodal distributions of parameters, without any evidence of morphologic subtypes. Their spine necks were longer and thinner in apical than in basal spines, and spine head volumes of an 85-year-old individual were larger than those of a 40-year-old individual. Human spines had longer and thicker necks and larger head volumes than mouse spines. Our results indicate that human spines form part of a continuum, are larger and longer than those of mice, and become larger with increasing adult age. These morphologic differences in spines across species could generate functional differences in biochemical and electrical spine compartmentalization, or in synaptic properties, across species and ages.


Volume Electron Microscopy Study of the Relationship Between Synapses and Astrocytes in the Developing Rat Somatosensory Cortex.

  • Toko Kikuchi‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2020‎

In recent years, numerous studies have shown that astrocytes play an important role in neuronal processing of information. One of the most interesting findings is the existence of bidirectional interactions between neurons and astrocytes at synapses, which has given rise to the concept of "tripartite synapses" from a functional point of view. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to examine in 3D the relationship of synapses with astrocytes that were previously labeled by intracellular injections in the rat somatosensory cortex. We observed that a large number of synapses (32%) had no contact with astrocytic processes. The remaining synapses (68%) were in contact with astrocytic processes, either at the level of the synaptic cleft (44%) or with the pre- and/or post-synaptic elements (24%). Regarding synaptic morphology, larger synapses with more complex shapes were most frequently found within the population that had the synaptic cleft in contact with astrocytic processes. Furthermore, we observed that although synapses were randomly distributed in space, synapses that were free of astrocytic processes tended to form clusters. Overall, at least in the developing rat neocortex, the concept of tripartite synapse only seems to be applicable to a subset of synapses.


Patterns of Dendritic Basal Field Orientation of Pyramidal Neurons in the Rat Somatosensory Cortex.

  • Ignacio Leguey‎ et al.
  • eNeuro‎
  • 2018‎

The study of neuronal dendritic orientation is of interest because it is related to how neurons grow dendrites to establish the synaptic input that neurons receive. The dendritic orientations of neurons in the nervous system vary, ranging from rather heterogeneously distributed (asymmetric) to homogeneously distributed (symmetric) dendritic arbors. Here, we analyze the dendritic orientation of the basal dendrites of intracellularly labeled pyramidal neurons from horizontal sections of Layers II-VI of the hindlimb somatosensory (S1HL) cortex of 14-d-old (P14) rats. We used circular statistics and proposed two new graphical descriptive representations of the neuron. We found that the dendritic pattern of most neurons was asymmetric. Furthermore, we found that there is a mixture of different types of orientations within any given group of neurons in any cortical layer. In addition, we investigated whether dendritic orientation was related to the physical location within the brain with respect to the anterior, dorsal, posterior and ventral directions. Generally, there was a preference towards the anterior orientation. A comparison between layers revealed that the preference for the anterior orientation was more pronounced in neurons located in Layers II, III, IV, and Va than for the neurons located in Layers Vb and VI. The dorsal orientation was the least preferred orientation in all layers, except for Layers IV and Va, where the ventral orientation had the lowest preference. Therefore, the orientation of basal dendritic arbors of pyramidal cells is variable and asymmetric, although a majority has a single orientation with a preference for the anterior direction in P14 rats.


Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence.

  • Esperanza Fernández‎ et al.
  • Cell reports‎
  • 2017‎

Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function.


Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.

  • Laura Anton-Sanchez‎ et al.
  • PloS one‎
  • 2017‎

We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: