2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Intra-articular injection of 2-pyridylethylamine produces spinal NPY-mediated antinociception in the formalin-induced rat knee-joint pain model.

  • Eduardo Souza-Silva‎ et al.
  • Brain research‎
  • 2020‎

Low doses of histamine or H1R agonist 2-pyridylethylamine (2-PEA) into the knee-joint were found to decrease formalin-induced articular nociception in rats. In this study, we evaluated the participation of spinal NPY in the antinociceptive effect produced by 2-PEA. Injection of formalin (1.5%) into one of the knee-joints causes the limping of the respective limb due to nociception, which was registered each 5 min over 60 min. Neuropeptide Y1 receptor (Y1R) content in the spinal cord was evaluated by western-blotting. Intrathecal (i.t.) injection of Y1R agonist Leu31, Pro34-NPY (0.7-7 µmol) decreased nociception, while injection of the antagonist BIBO 3304 (4 μmol), increased nociception. Antinociception produced by 2-PEA was reversed by a sub-effective i.t. dose of the Y1R antagonist. Similarly, this antinociceptive effect was prevented by i.t. pretreatment with the neurotoxin NPY-saporin (750 ng), which also reduced immunoblotting for Y1R in spinal cord homogenates. These data support the idea that antinociception induced by H1R agonists in the knee-joint of rats may be mediated by the spinal release of NPY, and this peptide seems to be acting via Y1R.


A novel crosslinking protocol stabilizes amyloid β oligomers capable of inducing Alzheimer's-associated pathologies.

  • Erika N Cline‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Amyloid β oligomers (AβOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AβO-targeting diagnostics and therapeutics, the AβO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AβOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aβ in a soluble oligomeric conformation. With DFDNB, solutions of Aβ that would otherwise convert to large aggregates instead yield solutions of stable AβOs, predominantly in the 50-300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top-down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AβOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AβO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AβOs in structure-function studies.


The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes.

  • Rafael C Dutra‎ et al.
  • Neurobiology of disease‎
  • 2013‎

Multiple sclerosis (MS) is a progressive, demyelinating inflammatory disease of the human central nervous system (CNS). While the primary symptoms of MS affect motor function, it is now recognized that chronic pain is a relevant symptom that affects both animals and MS patients. There is evidence that glial cells, such as astrocytes, play an important role in the development and maintenance of chronic pain. Kinins, notably bradykinin (BK) acting through B1 (B1R) and B2 (B2R) receptors, play a central role in pain and inflammatory processes. However, it remains unclear whether kinin receptors are involved in neuropathic pain in MS. Here we investigated by genetic and pharmacological approaches the role of kinin receptors in neuropathic pain behaviors induced in the experimental autoimmune encephalomyelitis (EAE) mouse model. Our results showed that gene deletion or antagonism of kinin receptors, especially B1R, significantly inhibited both tactile and thermal hypersensitivity in EAE animals. By contrast, animals with EAE and treated with a B1R selective agonist displayed a significant increase in tactile hypersensitivity. We also observed a marked increase in B1R mRNA and protein level in the mouse spinal cord 14days after EAE immunization. Blockade of B1R significantly suppressed the levels of mRNAs for IL-17, IFN-γ, IL-6, CXCL-1/KC, COX-2 and NOS2, as well as glial activation in the spinal cord. Of note, the selective B1 antagonist DALBK consistently prevented IFN-induced up-regulation of TNF-α and IL-6 release in astrocyte culture. Finally, both B1R and B2R antagonists significantly inhibited COX-2 and NOS2 expression in primary astrocyte culture. The B1R was co-localized with immunomarker of astrocytes in the spinal cord of EAE-treated animals. The above data constitute convincing experimental evidence indicating that both kinin receptors, especially the B1 subtype, exert a critical role in the establishment of persistent hypersensitivity observed in the EAE model, an action that seems to involve a central inflammatory process, possibly acting on astrocytes. Thus, B1 selective antagonists or drugs that reduce kinin release may have the potential to treat neuropathic pain in patients suffering from MS.


Distinctive stress sensitivity and anxiety-like behavior in female mice: Strain differences matter.

  • Renata Cristina Nunes Marchette‎ et al.
  • Neurobiology of stress‎
  • 2018‎

Epidemiologic studies have shown that the prevalence of stress-related mood disorders is higher in women, which suggests a different response of neuroendocrine circuits involved in the response to stressful events, as well as a genetic background influence. The aim of this study was to investigate the baseline differences in anxiety-like behaviors of females of two commonly used mice strains. Secondly, we have also aimed to study their behavioral and biochemical alterations following stress. Naïve 3-4 months-old Swiss and C57BL/6 female mice were evaluated in the elevated plus maze (EPM) and in the acoustic startle response (ASR) for anxiety-like behaviors. Besides, an independent group of animals from each strain was exposed to cold-restraint stress (30 min/4 °C, daily) for 21 consecutive days and then evaluated in EPM and in the sucrose consumption tests. Twenty-four hours following behavioral experimentation mice were decapitated and their hippocampi (HP) and cortex (CT) dissected for further Western blotting analysis of glucocorticoid receptor (GR) and glial fibrillary acid protein (GFAP). Subsequent to each behavioral protocol, animal blood samples were collected for further plasma corticosterone analysis. C57BL/6 presented a lower anxiety profile than Swiss female mice in both behavioral tests, EPM and ASR. These phenomena could be correlated with the fact that both strains have distinct corticosterone levels and GR expression in the HP at the baseline level. Moreover, C57BL/6 female mice were more vulnerable to the stress protocol, which was able to induce an anhedonic state characterized by lower preference for a sucrose solution. Behavioral anhedonic-like alterations in these animals coincide with reduced plasma corticosterone accompanied with increased GR and GFAP levels, both in the HP. Our data suggest that in C57BL/6 female mice a dysregulation of the hypothalamus-pituitary-adrenal axis (HPA-axis) occurs, in which corticosterone acting on GRs would possibly exert its pro-inflammatory role, ultimately leading to astrocyte activation in response to stress.


The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade.

  • Erika N Cline‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2018‎

The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer's disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis "has all but supplanted the amyloid cascade." Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: