Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells.

  • M Wade‎ et al.
  • Oncogene‎
  • 2012‎

Mdm2 is the major negative regulator of p53 tumor-suppressor activity. This oncoprotein is overexpressed in many human tumors that retain the wild-type p53 allele. As such, targeted inhibition of Mdm2 is being considered as a therapeutic anticancer strategy. The N-terminal hydrophobic pocket of Mdm2 binds to p53 and thereby inhibits the transcription of p53 target genes. Additionally, the C-terminus of Mdm2 contains a RING domain with intrinsic ubiquitin E3 ligase activity. By recruiting E2 ubiquitin-conjugating enzyme(s), Mdm2 acts as a molecular scaffold to facilitate p53 ubiquitination and proteasome-dependent degradation. Mdmx (Mdm4), an Mdm2 homolog, also has a RING domain and hetero-oligomerizes with Mdm2 to stimulate its E3 ligase activity. Recent studies have shown that C-terminal residues adjacent to the RING domain of both Mdm2 and Mdmx contribute to Mdm2 E3 ligase activity. However, the molecular mechanisms mediating this process remain unclear, and the biological consequences of inhibiting Mdm2/Mdmx co-operation or blocking Mdm2 ligase function are relatively unexplored. This study presents biochemical and cell biological data that further elucidate the mechanisms by which Mdm2 and Mdmx co-operate to regulate p53 level and activity. We use chemical and genetic approaches to demonstrate that functional inhibition of Mdm2 ubiquitin ligase activity is insufficient for p53 activation. This unexpected result suggests that concomitant treatment with Mdm2/Mdmx antagonists may be needed to achieve therapeutic benefit.


Dual inhibition of REV-ERBβ and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells.

  • C De Mei‎ et al.
  • Oncogene‎
  • 2015‎

REV-ERBα and REV-ERBβ nuclear receptors regulate several physiological processes, including circadian rhythm and metabolism. A previous study reported the REV-ERBα gene to be co-overexpressed with ERBB2 in breast cancer cell lines. Surprisingly, we found that several tumor types, including a number of breast cancer cell lines, predominantly express the REV-ERBβ variant. This pattern was independent of ERBB2 and ER status, and opposite to that of non-cancer mammary epithelial HMEC cells, in which REV-ERBα was the major variant. Consistent with this molecular profile, REV-ERB target genes in both circadian and metabolic pathways were derepressed upon silencing of REV-ERBβ, but not REV-ERBα. Strikingly, we found that REV-ERBβ is a determinant of sensitivity to chloroquine, a clinically relevant lysosomotropic agent that suppresses autophagy. The cytoprotective function of REV-ERBβ appears to operate downstream of autophagy blockade. Through compound screening, we identified ARN5187, a novel lysosomotropic REV-ERBβ ligand with a dual inhibitory activity toward REV-ERB-mediated transcriptional regulation and autophagy. Remarkably, although ARN5187 and chloroquine share similar lysosomotropic potency and have a similar effect on autophagy inhibition, ARN5187 is significantly more cytotoxic. Collectively, our results reveal that dual inhibition of REV-ERBβ and autophagy is an effective strategy for eliciting cytotoxicity in cancer cells. Furthermore, our discovery of a novel inhibitor compound of both REV-ERB and autophagy may provide a scaffold for the discovery of new multifunctional anticancer agents.


Comparison of the Respiratory Resistomes and Microbiota in Children Receiving Short versus Standard Course Treatment for Community-Acquired Pneumonia.

  • M M Pettigrew‎ et al.
  • mBio‎
  • 2022‎

Pediatric community-acquired pneumonia (CAP) is often treated with 10 days of antibiotics. Shorter treatment strategies may be effective and lead to less resistance. The impact of duration of treatment on the respiratory microbiome is unknown. Data are from children (n = 171), ages 6 to 71 months, enrolled in the SCOUT-CAP trial (NCT02891915). Children with CAP were randomized to a short (5 days) versus standard (10 days) beta-lactam treatment strategy. Throat swabs were collected at enrollment and the end of the study and used for shotgun metagenomic sequencing. The number of beta-lactam and multidrug efflux resistance genes per prokaryotic cell (RGPC) was significantly lower in children receiving the short compared to standard treatment strategy at the end of the study (Wilcoxon rank sum test, P < 0.05 for each). Wilcoxon effect sizes were small for beta-lactam (r: 0.15; 95% confidence interval [CI], 0.01 to 0.29) and medium for multidrug efflux RGPC (r: 0.23; 95% CI, 0.09 to 0.37). Analyses comparing the resistome at the beginning and end of the trial indicated that in contrast to the standard strategy group, the resistome significantly differed in children receiving the short course strategy. Relative abundances of commensals such as Neisseria subflava were higher in children receiving the standard strategy, and Prevotella species and Veillonella parvula were higher in children receiving the short course strategy. We conclude that children receiving 5 days of beta-lactam therapy for CAP had a significantly lower abundance of antibiotic resistance determinants than those receiving standard 10-day treatment. These data provide an additional rationale for reductions in antibiotic use when feasible. IMPORTANCE Antibiotic resistance is a major threat to public health. Treatment strategies involving shorter antibiotic courses have been proposed as a strategy to lower the potential for antibiotic resistance. We examined relationships between the duration of antibiotic treatment and its impact on resistance genes and bacteria in the respiratory microbiome using data from a randomized controlled trial of beta-lactam therapy for pediatric pneumonia. The randomized design provides reliable evidence of the effectiveness of interventions and minimizes the potential for confounding. Children receiving 5 days of therapy for pneumonia had a lower prevalence of two different types of resistance genes than did those receiving the 10-day treatment. Our data also suggest that children receiving longer durations of therapy have a greater abundance of antibiotic resistance genes for a longer period of time than do children receiving shorter durations of therapy. These data provide an additional rationale for reductions in antibiotic use.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: