Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Cx40.8, a Cx43-like protein, forms gap junction channels inefficiently and may require Cx43 for its association at the plasma membrane.

  • Sarah V Gerhart‎ et al.
  • FEBS letters‎
  • 2009‎

In addition to having a Cx43 ortholog, the zebrafish genome also contains a Cx43-like gene, Cx40.8. Here, we investigate the expression of cx40.8 in zebrafish fins and the function of Cx40.8 in HeLa cells. We find that cx40.8 is present in the same population of dividing cells as cx43. Unlike Cx43, dye coupling assays suggest that Cx40.8 only inefficiently forms functional gap junction channels. However, co-transfection reveals that Cx40.8 can co-localize with Cx43 in gap junction plaques, and that the resulting plaques contain functional gap junction channels. Together, these data suggest the possibility that Cx40.8 may functionally interact with Cx43 to regulate cell proliferation in vivo.


Hapln1a is required for connexin43-dependent growth and patterning in the regenerating fin skeleton.

  • Jayalakshmi Govindan‎ et al.
  • PloS one‎
  • 2014‎

Cell-cell communication, facilitating the exchange of small metabolites, ions and second messengers, takes place via aqueous proteinaceous channels called gap junctions. Connexins (cx) are the subunits of a gap junction channel. Mutations in zebrafish cx43 produces the short fin (sof (b123) ) phenotype and is characterized by short fins due to reduced segment length of the bony fin rays and reduced cell proliferation. Previously established results from our lab demonstrate that Cx43 plays a dual role regulating both cell proliferation (growth) and joint formation (patterning) during the process of skeletal morphogenesis. In this study, we show that Hapln1a (Hyaluronan and Proteoglycan Link Protein 1a) functions downstream of cx43. Hapln1a belongs to the family of link proteins that play an important role in stabilizing the ECM by linking the aggregates of hyaluronan and proteoglycans. We validated that hapln1a is expressed downstream of cx43 by in situ hybridization and quantitative RT-PCR methods. Moreover, in situ hybridization at different time points revealed that hapln1a expression peaks at 3 days post amputation. Expression of hapln1a is located in the medial mesenchyme and the in the lateral skeletal precursor cells. Furthermore, morpholino mediated knock-down of hapln1a resulted in reduced fin regenerate length, reduced bony segment length and reduced cell proliferation, recapitulating all the phenotypes of cx43 knock-down. Moreover, Hyaluronic Acid (HA) levels are dramatically reduced in hapln1a knock-down fins, attesting the importance of Hapln1a in stabilizing the ECM. Attempts to place hapln1a in our previously defined cx43-sema3d pathway suggest that hapln1a functions in a parallel genetic pathway. Collectively, our data suggest that Cx43 mediates independent Sema3d and Hapln1a pathways in order to coordinate skeletal growth and patterning.


Semaphorin3d mediates Cx43-dependent phenotypes during fin regeneration.

  • Quynh V Ton‎ et al.
  • Developmental biology‎
  • 2012‎

Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.


Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration.

  • Jayalakshmi Govindan‎ et al.
  • Gene expression patterns : GEP‎
  • 2015‎

Extracellular matrix plays a dynamic role during the process of wound healing, embryogenesis and tissue regeneration. Caudal fin regeneration in zebrafish is an excellent model to study tissue and skeletal regeneration. We have analyzed the expression pattern of some of the well characterized ECM proteins during the process of caudal fin regeneration in zebrafish. Our results show that a transitional matrix analogous to the one formed during newt skeletal and heart muscle regeneration is synthesized during fin regeneration. Here we demonstrate that a provisional matrix rich in hyaluronic acid, tenascin C, and fibronectin is synthesized following amputation. Additionally, we observed that the link protein Hapln1a dependent ECM, consisting of Hapln1a, hyaluronan and proteoglycan aggrecan, is upregulated during fin regeneration. Laminin, the protein characteristic of differentiated tissues, showed only modest change in the expression pattern. Our findings on zebrafish fin regeneration implicates that changes in the extracellular milieu represent an evolutionarily conserved mechanism that proceeds during tissue regeneration, yet with distinct players depending on the type of tissue that is involved.


Bone growth in zebrafish fins occurs via multiple pulses of cell proliferation.

  • Isha Jain‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2007‎

Fin length in the zebrafish is achieved by the distal addition of bony segments of the correct length. Genetic and molecular data provided evidence that segment growth uses a single pulse of growth, followed by a period of stasis. Examination of cell proliferation during segment growth was predicted to expose a graphical model consistent with a single burst of cell division (e.g., constant, parabolic, or exponential decay) during the lengthening of the distal-most segment. Cell proliferation was detected either by labeling animals with bromodeoxyuridine (during S-phase) or monitoring histone3-phosphate (mitosis). Results from both methods revealed that the number of proliferating cells fluctuates in apparent pulses as a segment grows (i.e., during the growth phase). Thus, rather than segment size being the result of a single burst of proliferation, it appears that segment growth is the result of several pulses of cell division that occur approximately every 60 microns (average segment length approximately 250 microns). These results indicate that segment lengthening requires multiple pulses of cell proliferation.


Cx43 suppresses evx1 expression to regulate joint initiation in the regenerating fin.

  • Gabrielle Dardis‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2017‎

How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation.


Novel Heparin Receptor Transmembrane Protein 184a Regulates Angiogenesis in the Adult Zebrafish Caudal Fin.

  • Sara Lynn N Farwell‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Transmembrane protein 184A (TMEM184A) was recently identified as the heparin receptor in vascular cells. Heparin binds specifically to TMEM184A and induces anti-proliferative signaling in vitro. Though it is highly conserved, the physiological function of TMEM184A remains unknown. The objective of this study was to investigate the expression and effects on vascular regeneration of TMEM184A using the adult zebrafish regenerating caudal fin as an in vivo model. Here, we show that Tmem184a is expressed in vascular endothelial cells (ECs) of mature and regenerating zebrafish fins. Transient morpholino (MO)-mediated knockdown of Tmem184a using two validated MOs results in tangled regenerating vessels that do not grow outward and limit normal overall fin regeneration. A significant increase in EC proliferation is observed. Consistent with in vitro work with tissue culture vascular cells, heparin has the opposite effect and decreases EC proliferation which also hinders overall fin regeneration. Collectively, our study suggests that Tmem184a is a novel regulator of angiogenesis.


Involvement of transmembrane protein 184a during angiogenesis in zebrafish embryos.

  • Cassandra J Field‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.


A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

  • Rachael Barton‎ et al.
  • PloS one‎
  • 2015‎

Plexins (plxns) are transmembrane (TM) receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM) for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET²) suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F) are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L) are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.


Osteoblast maturation occurs in overlapping proximal-distal compartments during fin regeneration in zebrafish.

  • Andrew M Brown‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2009‎

During fin regeneration, osteoblasts must continually differentiate for outgrowth of the bony fin rays. Bone maturity increases in a distal-proximal manner, and osteoblast maturation can be detected similarly when following gene expression. We find that early markers for osteoblast differentiation are expressed in a discrete domain at the distal end of the fin, just proximal to the adjacent germinal compartment of dividing cells. Matrix genes, required at later stages developmentally, are expressed in a population of cells proximally to the early genes. A marker for mature osteoblasts is expressed in cells further proximal. These domains of gene expression are partially overlapping, perhaps revealing additional levels of osteoblast maturity. We suggest a model for growth where new cells are continually added to the distal-most osteoblast compartment, while osteoblasts in more proximal locations differentiate, thus translating developmental time to location on the proximal-distal axis.


Connexin43 regulates joint location in zebrafish fins.

  • Kenneth Sims‎ et al.
  • Developmental biology‎
  • 2009‎

Joints are essential for skeletal form and function, yet their development remains poorly understood. In zebrafish fins, joints form between the bony fin ray segments providing essentially unlimited opportunities to evaluate joint morphogenesis. Mutations in cx43 cause the short segment phenotype of short fin (sof(b123)) mutants, suggesting that direct cell-cell communication may regulate joint location. Interestingly, increased cx43 expression in the another long fin (alf(dty86)) mutant appears to cause joint failure typical of that mutant. Indeed, knockdown of cx43 in alf(dty86) mutant fins rescues joint formation. Together, these data reveal a correlation between the level of Cx43 expression in the fin ray mesenchyme and the location of joints. Cx43 was also observed laterally in cells associated with developing joints. Confocal microscopy revealed that the Cx43 protein initially surrounds the membranes of ZNS5-positive joint cells, but at later stages becomes polarized toward the underlying Cx43-positive mesenchymal cells. One possibility is that communication between the Cx43-positive mesenchyme and the overlying ZNS5-positive cells regulates joint location, and upregulation of Cx43 in joint-forming cells contributes to joint morphogenesis.


The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

  • Sarah V Gerhart‎ et al.
  • PloS one‎
  • 2012‎

Connexins (Cx) are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.


Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes.

  • Stephen D Eastman‎ et al.
  • Genomics‎
  • 2006‎

Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.


Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels.

  • M Kathryn Iovine‎ et al.
  • FEBS letters‎
  • 2008‎

Gap junction channels may be comprised of either connexin or pannexin proteins (innexins and pannexins). Membrane topologies of both families are similar, but sequence similarity is lacking. Recently, connexin-like sequences have been identified in mammalian and zebrafish genomes that have only four conserved cysteines in the extracellular domains (Cx23), a feature of the pannexins. Phylogenetic analyses of the non-canonical "C4" connexins reveal that these sequences are indeed connexins. Functional assays reveal that the Cx23 gap junctions are capable of sharing neurobiotin, and further, that Cx23 connexins form hemichannels in vitro.


Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity.

  • Annie C Sanchez‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2022‎

Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.


Modulation of bioelectric cues in the evolution of flying fishes.

  • Jacob M Daane‎ et al.
  • Current biology : CB‎
  • 2021‎

Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.


Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome.

  • Rajeswari Banerji‎ et al.
  • Biology open‎
  • 2017‎

Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.


Impaired Cx43 gap junction endocytosis causes morphological and functional defects in zebrafish.

  • Caitlin Hyland‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1-5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256-289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.


Learning to Fish with Genetics: A Primer on the Vertebrate Model Danio rerio.

  • Nathalia G Holtzman‎ et al.
  • Genetics‎
  • 2016‎

In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: