Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Rare variant analyses in large-scale cohorts identified SLC13A1 associated with chronic pain.

  • Xiang Ao‎ et al.
  • Pain‎
  • 2023‎

Chronic pain is a prevalent disease with increasing clinical challenges. Genome-wide association studies in chronic pain patients have identified hundreds of common pathogenic variants, yet they only explained a portion of individual variance of chronic pain. With the advances in next-generation sequencing technologies, it is now feasible to conduct rarer variants studies in large-scale databases. Here, we performed gene-based rare variant analyses in 200,000 human subjects in the UK biobank whole-exome sequencing database for investigating 9 different chronic pain states and validated our findings in 3 other large-scale databases. Our analyses identified the SLC13A1 gene coding for sodium/sulfate symporter associated with chronic back pain and multisite pain at the genome-wide level and with chronic headache, knee, and neck and shoulder pain at the nominal level. Seven loss-of-function rare variants were identified within the gene locus potentially contributing to the development of chronic pain, with 2 of them individually associated with back pain and multisite pain. These 2 rare variants were then tested for replication in 3 other biobanks, and the strongest evidence was found for rs28364172 as an individual contributor. Transcriptional analyses of Slc13a1 in rodents showed substantial regulation of its expression in the dorsal root ganglia and the sciatic nerve in neuropathic pain assays. Our results stress the importance of the SLC13A1 gene in sulfate homeostasis in the nervous system and its critical role in preventing pain states, thus suggesting new therapeutic approaches for treating chronic pain in a personalized manner, especially in people with mutations in the SLC13A1 gene.


Molecular genetic mechanisms of allelic specific regulation of murine Comt expression.

  • Samantha K Segall‎ et al.
  • Pain‎
  • 2015‎

A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3'-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), Comt B2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3' to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3'-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels.


COMT gene locus: new functional variants.

  • Carolina B Meloto‎ et al.
  • Pain‎
  • 2015‎

Catechol-O-methyltransferase (COMT) metabolizes catecholaminergic neurotransmitters. Numerous studies have linked COMT to pivotal brain functions such as mood, cognition, response to stress, and pain. Both nociception and risk of clinical pain have been associated with COMT genetic variants, and this association was shown to be mediated through adrenergic pathways. Here, we show that association studies between COMT polymorphic markers and pain phenotypes in 2 independent cohorts identified a functional marker, rs165774, situated in the 3' untranslated region of a newfound splice variant, (a)-COMT. Sequence comparisons showed that the (a)-COMT transcript is highly conserved in primates, and deep sequencing data demonstrated that (a)-COMT is expressed across several human tissues, including the brain. In silico analyses showed that the (a)-COMT enzyme features a distinct C-terminus structure, capable of stabilizing substrates in its active site. In vitro experiments demonstrated not only that (a)-COMT is catalytically active but also that it displays unique substrate specificity, exhibiting enzymatic activity with dopamine but not epinephrine. They also established that the pain-protective A allele of rs165774 coincides with lower COMT activity, suggesting contribution to decreased pain sensitivity through increased dopaminergic rather than decreased adrenergic tone, characteristic of reference isoforms. Our results provide evidence for an essential role of the (a)-COMT isoform in nociceptive signaling and suggest that genetic variations in (a)-COMT isoforms may contribute to individual variability in pain phenotypes.


Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males.

  • Shad B Smith‎ et al.
  • Pain‎
  • 2019‎

Painful temporomandibular disorders (TMDs) are the leading cause of chronic orofacial pain, but its underlying molecular mechanisms remain obscure. Although many environmental factors have been associated with higher risk of developing painful TMD, family and twin studies support a heritable genetic component as well. We performed a genome-wide association study assuming an additive genetic model of TMD in a discovery cohort of 999 cases and 2031 TMD-free controls from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Using logistic models adjusted for sex, age, enrollment site, and race, we identified 3 distinct loci that were significant in combined or sex-segregated analyses. A single-nucleotide polymorphism on chromosome 3 (rs13078961) was significantly associated with TMD in males only (odds ratio = 2.9, 95% confidence interval: 2.02-4.27, P = 2.2 × 10). This association was nominally replicated in a meta-analysis of 7 independent orofacial pain cohorts including 160,194 participants (odds ratio = 1.16, 95% confidence interval: 1.0-1.35, P = 2.3 × 10). Functional analysis in human dorsal root ganglia and blood indicated this variant is an expression quantitative trait locus, with the minor allele associated with decreased expression of the nearby muscle RAS oncogene homolog (MRAS) gene (beta = -0.51, P = 2.43 × 10). Male mice, but not female mice, with a null mutation of Mras displayed persistent mechanical allodynia in a model of inflammatory pain. Genetic and behavioral evidence support a novel mechanism by which genetically determined MRAS expression moderates the resiliency to chronic pain. This effect is male-specific and may contribute to the lower rates of painful TMD in men.


Polymorphisms in the glucocorticoid receptor co-chaperone FKBP5 predict persistent musculoskeletal pain after traumatic stress exposure.

  • Andrey V Bortsov‎ et al.
  • Pain‎
  • 2013‎

Individual vulnerability factors influencing the function of the hypothalamic-pituitary-adrenal axis may contribute to the risk of the development of persistent musculoskeletal pain after traumatic stress exposure. The objective of the study was to evaluate the association between polymorphisms in the gene encoding FK506 binding protein 51, FKBP5, a glucocorticoid receptor co-chaperone, and musculoskeletal pain severity 6 weeks after 2 common trauma exposures. The study included data from 2 prospective emergency department-based cohorts: a discovery cohort (n=949) of European Americans experiencing motor vehicle collision and a replication cohort of adult European American women experiencing sexual assault (n=53). DNA was collected from trauma survivors at the time of initial assessment. Overall pain and neck pain 6 weeks after trauma exposure were assessed using a 0-10 numeric rating scale. After adjustment for multiple comparisons, 6 FKBP5 polymorphisms showed significant association (minimum P<0.0001) with both overall and neck pain in the discovery cohort. The association of rs3800373, rs9380526, rs9394314, rs2817032, and rs2817040 with neck pain and/or overall pain 6 weeks after trauma was replicated in the sexual assault cohort, showing the same direction of the effect in each case. The results of this study indicate that genetic variants in FKBP5 influence the severity of musculoskeletal pain symptoms experienced during the weeks after motor vehicle collision and sexual assault. These results suggest that glucocorticoid pathways influence the development of persistent posttraumatic pain, and that such pathways may be a target of pharmacologic interventions aimed at improving recovery after trauma.


Genetic studies of human neuropathic pain conditions: a review.

  • Katerina Zorina-Lichtenwalter‎ et al.
  • Pain‎
  • 2018‎

Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.


Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen.

  • Janine M Wotton‎ et al.
  • Pain‎
  • 2022‎

Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: