Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

  • Tina Sartorius‎ et al.
  • PloS one‎
  • 2015‎

It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity.


Single Nucleotide Polymorphisms in the G-Protein Coupled Receptor Kinase 5 (GRK5) Gene are associated with Plasma LDL-Cholesterol Levels in Humans.

  • Stefan Z Lutz‎ et al.
  • Scientific reports‎
  • 2018‎

Genetically modified mice models suggest an important role for G-protein-coupled receptor kinase 5 (GRK5) in the pathophysiology of obesity and related disorders. We investigated whether single nucleotide polymorphisms (SNPs) in the gene encoding GRK5 affect cardiometabolic traits in humans. We genotyped 3 common SNPs in intron 1 (rs1980030, rs10466210, rs9325562) and one SNP in intron 3 (rs10886471) of GRK5 in 2332 subjects at risk for type 2 diabetes. Total- and visceral fat mass were measured by magnetic resonance (MR) tomography and liver fat content by 1H-MR spectroscopy. Insulin secretion and sensitivity were estimated during an OGTT and measured during the euglycemic, hyperinsulinemic clamp (n = 498). Carriers of the minor allele of rs10466210 and rs1980030 had higher total- and LDL-cholesterol levels (p = 0.0018 and p = 0.0031, respectively, for rs10466210; p = 0.0035 and p = 0.0081, respectively, for rs1980030), independently of gender, age, BMI and lipid-lowering drugs. The effects of rs10466210 withstood Bonferroni correction. Similar associations were observed with apolipoprotein B levels (p = 0.0034 and p = 0.0122, respectively). Carriers of the minor allele of rs10466210 additionally displayed a trend for higher intima-media thickness of the carotid artery (p = 0.075). GRK5 may represent a novel target for strategies aiming at lowering LDL-cholesterol levels and at modifying cardiovascular risk.


Sensitive troponins--which suits better for hemodialysis patients? Associated factors and prediction of mortality.

  • Ferruh Artunc‎ et al.
  • PloS one‎
  • 2012‎

In hemodialysis patients, elevated plasma troponin concentrations are a common finding that has even increased with the advent of newly developed sensitive assays. However, the interpretation and relevance of this is still under debate.


Enforced expression of protein kinase C in skeletal muscle causes physical inactivity, fatty liver and insulin resistance in the brain.

  • Anita M Hennige‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Among the multitude of dysregulated signalling mechanisms that comprise insulin resistance in divergent organs, the primary events in the development of type 2 diabetes are not well established. As protein kinase C (PKC) activation is consistently present in skeletal muscle of obese and insulin resistant subjects, we generated a transgenic mouse model that overexpresses constitutively active PKC-beta(2) in skeletal muscle to test whether activation of PKC is sufficient to cause an aversive whole-body phenotype. Upon this genetic modification, increased serine phosphorylation in Irs1 was observed and followed by impaired (3)H-deoxy-glucose uptake and muscle glycogen content, and transgenic mice exhibited insulin and glucose intolerance as they age. Muscle histochemistry revealed an increase in lipid deposition (intramyocellular lipids), and transgenic mice displayed impaired expression of transcriptional regulators of genes involved in fatty acid oxidation (peroxisome proliferator-activated receptor-gamma, PGC-1beta, acyl-CoA oxidase) and lipolysis (hormone-sensitive lipase). In this regard, muscle of transgenic mice exhibited a reduced capacity to oxidize palmitate and contained less mitochondria as determined by citrate synthase activity. Moreover, the phenotype included a profound decrease in the daily running distance, intra-abdominal and hepatic fat accumulation and impaired insulin action in the brain. Together, our data suggest that activation of a classical PKC in skeletal muscle as present in the pre-diabetic state is sufficient to cause disturbances in whole-body glucose and lipid metabolism followed by profound alterations in oxidative capacity, ectopic fat deposition and physical activity.


Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice.

  • Andras Franko‎ et al.
  • Molecular metabolism‎
  • 2017‎

Recently, we have shown that Bezafibrate (BEZ), the pan-PPAR (peroxisome proliferator-activated receptor) activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice.


Pancreatic Steatosis Associates With Impaired Insulin Secretion in Genetically Predisposed Individuals.

  • Róbert Wagner‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Pancreatic steatosis leading to beta-cell failure might be involved in type 2 diabetes (T2D) pathogenesis.


TGF-β Induction of miR-143/145 Is Associated to Exercise Response by Influencing Differentiation and Insulin Signaling Molecules in Human Skeletal Muscle.

  • Simon I Dreher‎ et al.
  • Cells‎
  • 2021‎

Physical training improves insulin sensitivity and can prevent type 2 diabetes (T2D). However, approximately 20% of individuals lack a beneficial outcome in glycemic control. TGF-β, identified as a possible upstream regulator involved in this low response, is also a potent regulator of microRNAs (miRNAs). The aim of this study was to elucidate the potential impact of TGF-β-driven miRNAs on individual exercise response. Non-targeted long and sncRNA sequencing analyses of TGF-β1-treated human skeletal muscle cells corroborated the effects of TGF-β1 on muscle cell differentiation, the induction of extracellular matrix components, and identified several TGF-β1-regulated miRNAs. qPCR validated a potent upregulation of miR-143-3p/145-5p and miR-181a2-5p by TGF-β1 in both human myoblasts and differentiated myotubes. Healthy subjects who were overweight or obese participated in a supervised 8-week endurance training intervention (n = 40) and were categorized as responder or low responder in glycemic control based on fold change ISIMats (≥+1.1 or <+1.1, respectively). In skeletal muscle biopsies of low responders, TGF-β signaling and miR-143/145 cluster levels were induced by training at much higher rates than among responders. Target-mining revealed HDACs, MYHs, and insulin signaling components INSR and IRS1 as potential miR-143/145 cluster targets. All these targets were down-regulated in TGF-β1-treated myotubes. Transfection of miR-143-3p/145-5p mimics in differentiated myotubes validated MYH1, MYH4, and IRS1 as miR-143/145 cluster targets. Elevated TGF-β signaling and miR-143/145 cluster induction in skeletal muscle of low responders might obstruct improvements in insulin sensitivity by training in two ways: by a negative impact of miR-143-3p on muscle cell fusion and myofiber functionality and by directly impairing insulin signaling via a reduction in INSR by TGF-β and finetuned IRS1 suppression by miR-143-3p.


Increased soluble HLA in COVID-19 present a disease-related, diverse immunopeptidome associated with T cell immunity.

  • Annika Nelde‎ et al.
  • iScience‎
  • 2022‎

HLA-presented antigenic peptides are central components of T cell-based immunity in infectious disease. Beside HLA molecules on cell surfaces, soluble HLA molecules (sHLA) are released in the blood suggested to impact cellular immune responses. We demonstrated that sHLA levels were significantly increased in COVID-19 patients and convalescent individuals compared to a control cohort and positively correlated with SARS-CoV-2-directed cellular immunity. Of note, patients with severe courses of COVID-19 showed reduced sHLA levels. Mass spectrometry-based characterization of sHLA-bound antigenic peptides, the so-called soluble immunopeptidome, revealed a COVID-19-associated increased diversity of HLA-presented peptides and identified a naturally presented SARS-CoV-2-derived peptide from the viral nucleoprotein in the plasma of COVID-19 patients. Of interest, sHLA serum levels directly correlated with the diversity of the soluble immunopeptidome. Together, these findings suggest an inflammation-driven release of sHLA in COVID-19, directly influencing the diversity of the soluble immunopeptidome with implications for SARS-CoV-2-directed T cell-based immunity and disease outcome.


Comparison of three different serum-free light-chain assays-implications on diagnostic and therapeutic monitoring of multiple myeloma.

  • Aneta Schieferdecker‎ et al.
  • Blood cancer journal‎
  • 2020‎

The measurement of serum-free light chains (FLC) is standard of care in the diagnosis and management of multiple myeloma (MM). The revised international myeloma working group (IMWG) implemented the involved FLC/noninvolved FLC (iFLC/niFLC) ratio as a biomarker for MM requiring treatment. Recently, a new definition of high-risk smoldering MM (SMM) including iFLC/niFLC ratio was published. These recommendations were solely based on a single assay method (Freelite assay). Today, two additional assays, N Latex FLC and ELISA-based Sebia FLC, are available. Here, we report on a single-center-study comparing results of all three different assays for FLC correlation and its potential implications for diagnostic and clinical use. In total, 187 samples from 47 MM patients were examined, and determination of FLC was performed. Comparison analyses showed similar FLC results for Sebia FLC and N Latex FLC assay with markedly lower absolute values for κ/λ ratio compared with Freelite. Values of λ FLC exhibited high variability. The ratio of iFLC/niFLC showed significant discrepancies among these assays. Our data demonstrate that the three available assays may result in markedly discrepant results, and should not be used interchangeably to monitor patients. Furthermore, modifications of the assay-specific diagnostic (iFLC/niFLC) thresholds for SMM and MM are recommended.


Human Prostate Cancer is Characterized by an Increase in Urea Cycle Metabolites.

  • Andras Franko‎ et al.
  • Cancers‎
  • 2020‎

Despite it being the most common incident of cancer among men, the pathophysiological mechanisms contributing to prostate cancer (PCa) are still poorly understood. Altered mitochondrial metabolism is postulated to play a role in the development of PCa. To determine the key metabolites (which included mitochondrial oncometabolites), benign prostatic and cancer tissues of patients with PCa were analyzed using capillary electrophoresis and liquid chromatography coupled with mass spectrometry. Gene expression was studied using real-time PCR. In PCa tissues, we found reduced levels of early tricarboxylic acid cycle metabolites, whereas the contents of urea cycle metabolites including aspartate, argininosuccinate, arginine, proline, and the oncometabolite fumarate were higher than that in benign controls. Fumarate content correlated positively with the gene expression of oncogenic HIF1α and NFκB pathways, which were significantly higher in the PCa samples than in the benign controls. Furthermore, data from the TCGA database demonstrated that prostate cancer patients with activated NFκB pathway had a lower survival rate. In summary, our data showed that fumarate content was positively associated with carcinogenic genes.


Exercise prevents fatty liver by modifying the compensatory response of mitochondrial metabolism to excess substrate availability.

  • Miriam Hoene‎ et al.
  • Molecular metabolism‎
  • 2021‎

Liver mitochondria adapt to high-calorie intake. We investigated how exercise alters the early compensatory response of mitochondria, thus preventing fatty liver disease as a long-term consequence of overnutrition.


T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals.

  • Tatjana Bilich‎ et al.
  • Science translational medicine‎
  • 2021‎

Long-term immunological memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for the development of population-level immunity, which is the aim of vaccination approaches. Reports on rapidly decreasing antibody titers have led to questions regarding the efficacy of humoral immunity alone. The relevance of T cell memory after coronavirus disease 2019 (COVID-19) remains unclear. Here, we investigated SARS-CoV-2 antibody and T cell responses in matched samples of COVID-19 convalescent individuals up to 6 months after infection. Longitudinal analysis revealed decreasing and stable spike- and nucleocapsid-specific antibody responses, respectively. In contrast, functional T cell responses remained robust, and even increased, in both frequency and intensity. Single peptide mapping of T cell diversity over time identified open reading frame-independent, dominant T cell epitopes mediating long-term SARS-CoV-2 T cell responses. Identification of these epitopes may be fundamental for COVID-19 vaccine design.


Long COVID symptoms in exposed and infected children, adolescents and their parents one year after SARS-CoV-2 infection: A prospective observational cohort study.

  • Anneke Haddad‎ et al.
  • EBioMedicine‎
  • 2022‎

Long COVID in children and adolescents remains poorly understood due to a lack of well-controlled studies with long-term follow-up. In particular, the impact of the family context on persistent symptoms following SARS-CoV-2 infection remains unknown. We examined long COVID symptoms in a cohort of infected children, adolescents, and adults and their exposed but non-infected household members approximately 1 year after infection and investigated clustering of persistent symptoms within households.


Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

  • Jennifer Wessel‎ et al.
  • Nature communications‎
  • 2015‎

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Individual stearoyl-coa desaturase 1 expression modulates endoplasmic reticulum stress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo.

  • Andreas Peter‎ et al.
  • Diabetes‎
  • 2009‎

Increased plasma levels of free fatty acids occur in obesity and type 2 diabetes and contribute to the development of insulin resistance. Saturated fatty acids (SFAs) such as palmitate especially have lipotoxic effects leading to endoplasmatic reticulum (ER) stress, inflammation, and insulin resistance. Stearoyl-CoA desaturase 1 (SCD1) plays a key role in preventing lipotoxic effects, as it converts SFAs to less harmful monounsaturated fatty acids. Here, we tested the hypothesis that individual differences in the regulation of SCD1 expression by palmitate exist and influence insulin sensitivity and the cellular response to palmitate.


Glucose-Raising Polymorphisms in the Human Clock Gene Cryptochrome 2 (CRY2) Affect Hepatic Lipid Content.

  • Fausto Machicao‎ et al.
  • PloS one‎
  • 2016‎

Circadian rhythms govern vital functions. Their disruption provokes metabolic imbalance favouring obesity and type-2 diabetes. The aim of the study was to assess the role of clock genes in human prediabetes. To this end, genotype-phenotype associations of 121 common single nucleotide polymorphisms (SNPs) tagging ARNTL, ARNTL2, CLOCK, CRY1, CRY2, PER1, PER2, PER3, and TIMELESS were assessed in a study population of 1,715 non-diabetic individuals metabolically phenotyped by 5-point oral glucose tolerance tests. In subgroups, hyperinsulinaemic-euglycaemic clamps, intravenous glucose tolerance tests, and magnetic resonance imaging/spectroscopy were performed. None of the tested SNPs was associated with body fat content, insulin sensitivity, or insulin secretion. Four CRY2 SNPs were associated with fasting glycaemia, as reported earlier. Importantly, carriers of these SNPs' minor alleles revealed elevated fasting glycaemia and, concomitantly, reduced liver fat content. In human liver tissue samples, CRY2 mRNA expression was directly associated with hepatic triglyceride content. Our data may point to CRY2 as a novel switch in hepatic fuel metabolism promoting triglyceride storage and, concomitantly, limiting glucose production. The anti-steatotic effects of the glucose-raising CRY2 alleles may explain why these alleles do not increase type-2 diabetes risk.


Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans.

  • Robert Wagner‎ et al.
  • Diabetes‎
  • 2013‎

The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are undergoing investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1 agonist, TUG-469, stimulate glucose-induced insulin secretion through FFAR1. The proapoptotic effect of chronic exposure of β-cells to palmitate was independent of FFAR1. TUG-469 was protective, whereas inhibition of FFAR1 promoted apoptosis. In accordance with the proapoptotic effect of palmitate, in vivo cross-sectional observations demonstrated a negative association between fasting free fatty acids (NEFAs) and insulin secretion. Because NEFAs stimulate secretion through FFAR1, we examined the interaction of genetic variation in FFAR1 with NEFA and insulin secretion. The inverse association of NEFA and secretion was modulated by rs1573611 and became steeper for carriers of the minor allele. In conclusion, FFAR1 agonists support β-cell function, but variation in FFAR1 influences NEFA effects on insulin secretion and therefore could affect therapeutic efficacy of FFAR1 agonists.


Limitations of Specific Coagulation Tests for Direct Oral Anticoagulants: A Critical Analysis.

  • Matthias Ebner‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background During treatment with direct oral anticoagulants ( DOAC ), coagulation assessment is required before thrombolysis, surgery, and if anticoagulation reversal is evaluated. Limited data support the accuracy of DOAC -specific coagulation assays around the current safe-for-treatment threshold of 30 ng/ mL . Methods and Results In 481 samples obtained from 96 patients enrolled at a single center, DOAC concentrations were measured using Hemoclot direct thrombin inhibitor assay, Biophen direct thrombin inhibitor assay or ecarin clotting time for dabigatran, chromogenic anti-Xa assay ( AXA ) for factor Xa inhibitors (rivaroxaban, apixaban) and ultraperformance liquid chromatography-tandem mass spectrometry as reference. All dabigatran-specific assays had high sensitivity to concentrations >30 ng/ mL , but specificity was lower for Hemoclot direct thrombin inhibitor assay (78.2%) than for Biophen direct thrombin inhibitor assay (98.9%) and ecarin clotting time (94.6%). AXA provided high sensitivity and specificity for rivaroxaban, but low sensitivity for apixaban (73.8%; concentrations up to 82 ng/ mL were misclassified as <30 ng/ mL ). If no DOAC -specific calibration for AXA is available, results 2-fold above the upper limit of normal indicate relevant rivaroxaban concentrations. For apixaban, all elevated results should raise suspicion of relevant anticoagulation. Conclusions DOAC -specific tests differ considerably in diagnostic performance for concentrations close to the currently accepted safe-for-treatment threshold. Compared with Biophen direct thrombin inhibitor assay and ecarin clotting time, limited specificity of Hemoclot direct thrombin inhibitor assay poses a high risk of unnecessary anticoagulation reversal or treatment delays in patients on dabigatran. While AXA accurately detected rivaroxaban, the impact of low apixaban levels on the assay was weak. Hence, AXA results need to be interpreted with extreme caution when used to assess hemostatic function in patients on apixaban. Clinical Trial Registration URL : https://www.clinicaltrials.gov . Unique identifiers: NCT 02371044, NCT 02371070.


cGMP-dependent protein kinase I (cGKI) modulates human hepatic stellate cell activation.

  • Andras Franko‎ et al.
  • Metabolism: clinical and experimental‎
  • 2018‎

The activation of hepatic stellate cells (HSCs) plays a crucial role in liver fibrosis, however the role of HSCs is less understood in hepatic insulin resistance. Since in the liver cGMP-dependent protein kinase I (cGKI) was detected in HSC but not in hepatocytes, and cGKI-deficient mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice) displayed hepatic insulin resistance, we hypothesized that cGKI modulates HSC activation and insulin sensitivity.


Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants including edoxaban.

  • Florian Härtig‎ et al.
  • Neurological research and practice‎
  • 2021‎

Direct oral anticoagulants (DOAC) including edoxaban are increasingly used for stroke prevention in atrial fibrillation. Despite treatment, annual stroke rate in these patients remains 1-2%. Rapid assessment of coagulation would be useful to guide thrombolysis or reversal therapy in this growing population of DOAC/edoxaban-treated stroke patients. Employing the Hemochron™ Signature Elite point-of-care test system (HC-POCT), clinically relevant plasma concentrations of dabigatran and rivaroxaban can be excluded in a blood sample. However, no data exists on the effect of edoxaban on HC-POCT results. We evaluated whether edoxaban plasma concentrations above the current treatment thresholds for thrombolysis or anticoagulation reversal (i.e., 30 and 50 ng/mL) can be ruled out with the HC-POCT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: