Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence.

  • Tadakimi Tomita‎ et al.
  • PLoS pathogens‎
  • 2013‎

Toxoplasma gondii infects up to one third of the world's population. A key to the success of T. gondii as a parasite is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. Because most of the antibodies and reagents that recognize the cyst wall recognize carbohydrates, identification of the components of the cyst wall has been technically challenging. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in reduced cyst number and a fragile brain cyst phenotype characterized by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress, and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that confers essential sturdiness to the T. gondii tissue cyst critical for persistence of bradyzoite forms.


Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites.

  • Yuho Murata‎ et al.
  • PloS one‎
  • 2017‎

Drug treatment for toxoplasmosis is problematic, because current drugs cannot eradicate latent infection with Toxoplasma gondii and can cause bone marrow toxicity. Because latent infection remains after treatment, relapse of infection is a problem in both infections in immunocompromised patients and in congenitally infected patients. To identify lead compounds for novel drugs against Toxoplasma gondii, we screened a chemical compound library for anti-Toxoplasma activity, host cell cytotoxicity, and effect on bradyzoites. Of 878 compounds screened, 83 demonstrated >90% parasite growth inhibition. After excluding compounds that affected host cell viability, we further characterized two compounds, tanshinone IIA and hydroxyzine, which had IC50 values for parasite growth of 2.5 μM and 1.0 μM, respectively, and had no effect on host cell viability at 25 μM. Both tanshinone IIA and hydroxyzine inhibited parasite replication after invasion and both reduced the number of in vitro-induced bradyzoites, whereas, pyrimethamine, the current therapy, had no effect on bradyzoites. Both tanshinone IIA and hydroxyzine are potent lead compounds for further medicinal chemistry. The method presented for evaluating compounds for bradyzoite efficacy represents a new approach to the development of anti-Toxoplasma drugs to eliminate latency and treat acute infection.


The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism.

  • Patrick J Keeling‎ et al.
  • Genome biology and evolution‎
  • 2010‎

Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.


Microarray analysis of IFN-gamma response genes in astrocytes.

  • Sandra K Halonen‎ et al.
  • Journal of neuroimmunology‎
  • 2006‎

IFN-gamma (IFN-gamma) has been shown to activate astrocytes to acquire immune functions. In this study the effect of IFN-gamma on murine astrocytes was investigated via microarray analysis. The activating effect of IFN-gamma on the astrocyte transcriptome showed predominance toward pathways involved in adaptive immunity, initiation of the immune response and innate immunity. Previously unknown astrocytic genes expressed included members of the p47 GTPases and guanine nucleotide binding protein (GBP) families. Down-regulatory effects of IFN-gamma stimulation were confined to pathways involved in growth regulation, cell differentiation and cell adhesion. This data supports the notion that astrocytes are an important immunocompetant cell in the brain and indicate that astrocytes may have a significant role in various infectious diseases such as Toxoplasmic Encephalitis and neurological diseases with an immunological component such as Alzheimer's and autoimmune disorders.


Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity.

  • Tadakimi Tomita‎ et al.
  • mBio‎
  • 2017‎

The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism.


Toxoplasma gondii Matrix Antigen 1 Is a Secreted Immunomodulatory Effector.

  • Tadakimi Tomita‎ et al.
  • mBio‎
  • 2021‎

Our studies on novel cyst wall proteins serendipitously led us to the discovery that cyst wall and vacuolar matrix protein MAG1, first identified a quarter of a century ago, functions as a secreted immunomodulatory effector. MAG1 is a dense granular protein that is found in the parasitophorous vacuolar matrix in tachyzoite vacuoles and the cyst wall and matrix in bradyzoite vacuoles. In the current study, we demonstrated that MAG1 is secreted beyond the parasitophorous vacuole into the host cytosol in both tachyzoites and bradyzoites. Secretion of MAG1 gradually decreases as the parasitophorous vacuole matures, but prominent MAG1 puncta are present inside host cells even at 4 and 6 days following infection. During acute murine infection, Δmag1 parasites displayed significantly reduced virulence and dissemination. In the chronic stage of infection, Δmag1 parasites generated almost no brain cysts. To identify the mechanism behind the attenuated pathology seen with Δmag1 parasites, various immune responses were screened in vitro using bone marrow-derived macrophages (BMDM). Infection of BMDM with Δmag1 parasites induced a significant increase in interleukin 1β (IL-1β) secretion, which is a hallmark of inflammasome activation. Heterologous complementation of MAG1 in BMDM cells prevented this Δmag1 parasite-induced IL-1β release, indicating that secreted MAG1 in host cytosol dampens inflammasome activation. Furthermore, knocking out GRA15 (an inducer of IL-1β release) in Δmag1 parasites completely inhibited all IL-1β release by host cells following infection. These data suggest that MAG1 has a role as an immunomodulatory molecule and that by suppressing inflammasome activation, it would favor survival of the parasite and the establishment of latent infection.IMPORTANCEToxoplasma gondii is an Apicomplexan that infects a third of humans, causing encephalitis in AIDS patients and intellectual disabilities in congenitally infected patients. We determined that one of the cyst matrix proteins, MAG1, which had been thought to be an innate structural protein, can be secreted into the host cell and suppress the host immune reaction. This particular immune reaction is initiated by another parasite-secreted protein, GRA15. The intricate balance of inflammasome activation by GRA15 and suppression by MAG1 protects mice from acute death while enabling parasites to disseminate and establish chronic cysts. Our finding contributes to our understanding of how parasites persist in the host and how T. gondii modulates the host immune system.


Stage-Specific and Selective Delivery of Caged Azidosugars into the Intracellular Parasite Toxoplasma gondii by Using an Esterase-Ester Pair Technique.

  • Tadakimi Tomita‎ et al.
  • mSphere‎
  • 2019‎

Toxoplasma gondii is an obligate intracellular parasite that chronically infects up to a third of the human population. The parasites persist in the form of cysts in the central nervous system and serve as a reservoir for the reactivation of toxoplasmic encephalitis. The cyst wall is known to have abundant O-linked N-acetylgalactosamine glycans, but the existing metabolic labeling methods do not allow selective labeling of intracellular parasite glycoproteins without labeling of host glycans. In this study, we have integrated Cu(I)-catalyzed bioorthogonal click chemistry with a specific esterase-ester pair system in order to selectively deliver azidosugars to the intracellular parasites. We demonstrated that α-cyclopropyl modified GalNAz was cleaved by porcine liver esterase produced in the parasites but not in the host cells. Our proof-of-concept study demonstrates the feasibility and potential of this esterase-ester click chemistry approach for the selective delivery of small molecules in a stage-specific manner.IMPORTANCE Selective delivery of small molecules into intracellular parasites is particularly problematic due to the presence of multiple membranes and surrounding host cells. We have devised a method that can deliver caged molecules into an intracellular parasite, Toxoplasma gondii, that express an uncaging enzyme in a stage-specific manner without affecting host cell biology. This system provides a valuable tool for studying many intracellular parasites.


Patterns of genome evolution among the microsporidian parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi.

  • Nicolas Corradi‎ et al.
  • PloS one‎
  • 2007‎

Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult to determine how conservation has been maintained through microsporidian evolution, and impossible to identify whether certain regions are more prone to genomic stasis.


Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection.

  • Anthony W Ashton‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A(2) (TXA(2)). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA(2) is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA(2) accounts for up to 90% of the circulating levels of TXA(2) in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA(2) receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA(2) synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA(2) in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA(2) may result in novel therapeutic targets for a disease with limited treatment options.


Intranuclear inclusions consistent with a Nucleospora sp. in a lymphoid lesion in a laboratory zebrafish, Danio rerio (Hamilton 1822).

  • Michael L Kent‎ et al.
  • Journal of fish diseases‎
  • 2021‎

No abstract available


Enterocytozoon schreckii n. sp. Infects the Enterocytes of Adult Chinook Salmon (Oncorhynchus tshawytscha) and May Be a Sentinel of Immunosenescence.

  • Claire E Couch‎ et al.
  • mSphere‎
  • 2022‎

A novel Enterocytozoon infection was identified in the intestines of sexually mature Chinook salmon. While microsporidian parasites are common across a diverse range of animal hosts, this novel species is remarkable because it demonstrates biological, pathological, and genetic similarity with Enterocytozoon bieneusi, the most common causative agent of microsporidiosis in AIDS patients. There are similarities in the immune and endocrine processes of sexually mature Pacific salmon and immunocompromised humans, suggesting possible common mechanisms of susceptibility in these two highly divergent host species. The discovery of Enterocytozoon schreckii n. sp. contributes to clarifying the phylogenetic relationships within family Enterocytozoonidae. The phylogenetic and morphological features of this species support the redescription of Enterocytozoon to include Enterospora as a junior synonym. Furthermore, the discovery of this novel parasite may have important implications for conservation, as it could be a sentinel of immune suppression, disease, and prespawning mortality in threatened populations of salmonids. IMPORTANCE In this work, we describe a new microsporidian species that infects the enterocytes of Chinook salmon. This novel pathogen is closely related to Enterocytozoon bieneusi, an opportunistic pathogen commonly found in AIDS patients and other severely immunocompromised humans. The discovery of this novel pathogen is of interest because it has only been found in sexually mature Chinook salmon, which have compromised immune systems due to the stresses of migration and maturation and which share similar pathological features with immunocompromised and senescent humans. The discovery of this novel pathogen could lead to new insights regarding how microsporidiosis relates to immunosuppression across animal hosts.


Current Therapy and Therapeutic Targets for Microsporidiosis.

  • Junhong Wei‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Microsporidia are obligate intracellular, spore-forming parasitic fungi which are grouped with the Cryptomycota. They are both opportunistic pathogens in humans and emerging veterinary pathogens. In humans, they cause chronic diarrhea in immune-compromised patients and infection is associated with increased mortality. Besides their role in pébrine in sericulture, which was described in 1865, the prevalence and severity of microsporidiosis in beekeeping and aquaculture has increased markedly in recent decades. Therapy for these pathogens in medicine, veterinary, and agriculture has become a recent focus of attention. Currently, there are only a few commercially available antimicrosporidial drugs. New therapeutic agents are needed for these infections and this is an active area of investigation. In this article we provide a comprehensive summary of the current as well as several promising new agents for the treatment of microsporidiosis including: albendazole, fumagillin, nikkomycin, orlistat, synthetic polyamines, and quinolones. Therapeutic targets which could be utilized for the design of new drugs are also discussed including: tubulin, type 2 methionine aminopeptidase, polyamines, chitin synthases, topoisomerase IV, triosephosphate isomerase, and lipase. We also summarize reports on the utility of complementary and alternative medicine strategies including herbal extracts, propolis, and probiotics. This review should help facilitate drug development for combating microsporidiosis.


Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins.

  • Yolanda Rivera-Cuevas‎ et al.
  • PLoS pathogens‎
  • 2021‎

Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.


Alterations in myocardial gene expression associated with experimental Trypanosoma cruzi infection.

  • Shankar Mukherjee‎ et al.
  • Genomics‎
  • 2008‎

Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention.


Aspirin treatment of mice infected with Trypanosoma cruzi and implications for the pathogenesis of Chagas disease.

  • Shankar Mukherjee‎ et al.
  • PloS one‎
  • 2011‎

Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2α). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the "cytokine storm" during acute infection. We conclude that ASA, through both COX inhibition and other "off-target" effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.


Trypanosoma cruzi utilizes the host low density lipoprotein receptor in invasion.

  • Fnu Nagajyothi‎ et al.
  • PLoS neglected tropical diseases‎
  • 2011‎

Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.


In Vitro Characterization of Protein Effector Export in the Bradyzoite Stage of Toxoplasma gondii.

  • Joshua Mayoral‎ et al.
  • mBio‎
  • 2020‎

The ubiquitous parasite Toxoplasma gondii exhibits an impressive ability to maintain chronic infection of its host for prolonged periods. Despite this, little is known regarding whether and how T. gondii bradyzoites, a quasi-dormant life stage residing within intracellular cysts, manipulate the host cell to maintain persistent infection. A previous proteomic study of the cyst wall, an amorphous layer of proteins that forms underneath the cyst membrane, identified MYR1 as a putative cyst wall protein in vitro Because MYR1 is known to be involved in the translocation of parasite-derived effector proteins into the host cell, we sought to determine whether parasites transitioning toward the bradyzoite life stage retain the capacity to translocate proteins via this pathway. By epitope tagging the endogenous loci of four known effectors that translocate from the parasitophorous vacuole into the host cell nucleus, we show, by immunofluorescence assays, that most effectors accumulate in the host nucleus at early but not late time points after infection, during the tachyzoite-to-bradyzoite transition and when parasites further along the bradyzoite differentiation continuum invade a new host cell. We demonstrate that the suppression of interferon gamma signaling, which was previously shown to be mediated by the effector TgIST, also occurs in the context of prolonged infection with bradyzoites and that TgIST export is a process that occurs beyond the early stages of host cell infection. These findings have important implications regarding how this highly successful parasite maintains persistent infection of its host.IMPORTANCEToxoplasma bradyzoites persist within tissue cysts and are refractory to current treatments, serving as a reservoir for acute complications in settings of compromised immunity. Much remains to be understood regarding how this life stage successfully establishes and maintains persistent infection. In this study, we investigated whether the export of parasite effector proteins into the host cell occurs during the development of in vitro tissue cysts. We quantified the presence of four previously described effectors in host cell nuclei at different time points after bradyzoite differentiation and found that they accumulated largely during the early stages of infection. Despite a decline in nuclear accumulation, we found that one of these effectors still mediated its function after prolonged infection with bradyzoites, and we provide evidence that this effector is exported beyond early infection stages. These findings suggest that effector export from within developing tissue cysts provides one potential mechanism by which this parasite achieves chronic infection.


Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Toxoplasma gondii Infection.

  • Joshua Mayoral‎ et al.
  • mBio‎
  • 2022‎

The intracellular parasite Toxoplasma gondii adapts to diverse host cell environments within a replicative compartment that is heavily decorated by secreted proteins. In an attempt to identify novel parasite secreted proteins that influence host cell activity, we identified and characterized a transmembrane dense granule protein dubbed GRA64 (TGME49_202620). We found that GRA64 is on the parasitophorous vacuolar membrane (PVM) and is partially exposed to the host cell cytoplasm in both tachyzoite and bradyzoite parasitophorous vacuoles. Using co-immunoprecipitation and proximity-based biotinylation approaches, we demonstrated that GRA64 appears to interact with components of the host endosomal sorting complexes required for transport (ESCRT). Genetic disruption of GRA64 does not affect acute Toxoplasma virulence or encystation in mice, as observed via tissue cyst burdens in mice during chronic infection. However, ultrastructural analysis of Δgra64 tissue cysts using electron tomography revealed enlarged vesicular structures underneath the cyst membrane, suggesting a role for GRA64 in organizing the recruitment of ESCRT proteins and subsequent intracystic vesicle formation. This study uncovers a novel host-parasite interaction that contributes to an emerging paradigm in which specific host ESCRT proteins are recruited to the limiting membranes (PVMs) of tachyzoite and bradyzoite vacuoles formed during acute and chronic Toxoplasma infection. IMPORTANCE Toxoplasma gondii is a widespread foodborne parasite that causes congenital disease and life-threatening complications in immunocompromised individuals. Part of this parasite's success lies in its ability to infect diverse organisms and host cells and to persist as a latent infection within parasite-constructed structures called tissue cysts. In this study, we characterized a protein that is secreted by T. gondii into its parasitophorous vacuole during intracellular infection, which we dub GRA64. On the vacuolar membrane, this protein is exposed to the host cell cytosol and interacts with specific host ESCRT proteins. Parasites lacking the GRA64 protein exhibit ultrastructural changes in tissue cysts during chronic infection. This study lays the foundation for future studies on the mechanics and consequences of host ESCRT-parasite protein interactions.


Fat tissue regulates the pathogenesis and severity of cardiomyopathy in murine chagas disease.

  • Kezia Lizardo‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Chronic Chagas cardiomyopathy (CCC) caused by a parasite Trypanosoma cruzi is a life-threatening disease in Latin America, for which there is no effective drug or vaccine. The pathogenesis of CCC is complex and multifactorial. Previously, we demonstrated T. cruzi infected mice lose a significant amount of fat tissue which correlates with progression of CCC. Based on this an investigation was undertaken during both acute and chronic T. cruzi infection utilizing the FAT-ATTAC murine model (that allows modulation of fat mass) to understand the consequences of the loss of adipocytes in the regulation of cardiac parasite load, parasite persistence, inflammation, mitochondrial stress, ER stress, survival, CCC progression and CCC severity. Mice were infected intraperitoneally with 5x104 and 103 trypomastigotes to generate acute and chronic Chagas models, respectively. Ablation of adipocytes was carried out in uninfected and infected mice by treatment with AP21087 for 10 days starting at 15DPI (acute infection) and at 65DPI (indeterminate infection). During acute infection, cardiac ultrasound imaging, histological, and biochemical analyses demonstrated that fat ablation increased cardiac parasite load, cardiac pathology and right ventricular dilation and decreased survival. During chronic indeterminate infection ablation of fat cells increased cardiac pathology and caused bi-ventricular dilation. These data demonstrate that dysfunctional adipose tissue not only affects cardiac metabolism but also the inflammatory status, morphology and physiology of the myocardium and increases the risk of progression and severity of CCC in murine Chagas disease.


Susceptibility of Toxoplasma gondii to autophagy in human cells relies on multiple interacting parasite loci.

  • Nicholas Rinkenberger‎ et al.
  • mBio‎
  • 2024‎

Autophagy is a process used by cells to recycle organelles and macromolecules and to eliminate intracellular pathogens. Previous studies have shown that some stains of Toxoplasma gondii are resistant to autophagy-dependent growth restriction, while others are highly susceptible. Although it is known that autophagy-mediated control requires activation by interferon gamma, the basis for why parasite strains differ in their susceptibility is unknown. Our findings indicate that susceptibility involves at least five unlinked parasite genes on different chromosomes, including several secretory proteins targeted to the parasite-containing vacuole and exposed to the host cell cytosol. Our findings reveal that susceptibility to autophagy-mediated growth restriction relies on differential recognition of parasite proteins exposed at the host-pathogen interface, thus identifying a new mechanism for cell-autonomous control of intracellular pathogens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: