Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

An ankylosing spondylitis-associated genetic variant in the IL23R-IL12RB2 intergenic region modulates enhancer activity and is associated with increased Th1-cell differentiation.

  • Amity R Roberts‎ et al.
  • Annals of the rheumatic diseases‎
  • 2016‎

To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region.


Effect of eight-section brocade on bone mineral density in middle age and elderly people: Protocol for a systematic review and meta-analysis of randomised controlled trials.

  • Tianzhao Tian‎ et al.
  • Medicine‎
  • 2020‎

Physical therapy have an important role in preventing and managing osteoporosis (OP). A number of randomized controlled studies have indicated that eight-section brocade (ESB) could increase bone mass and alleviate pain, particularly in older women. However, there is no systematic review evaluating safety and efficacy of ESB.


Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PAN endonuclease.

  • Yixian Liao‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Currently, influenza PAN endonuclease has become an attractive target for development of new drugs to treat influenza infections. Herein we report the discovery of new PAN endonuclease inhibitors derived from a chelating agent dopamine moiety. A series of dopamine amide derivatives and their conformationally constrained 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based analogs were elaborated and assayed against influenza virus A/WSN/33 (H1N1). Most compounds exhibited moderate to excellent antiviral activities, generating a preliminary SARs. Among them, compounds 14 and 19 showed stronger anti-IAV activity compared with the reference Peramivir. Moreover, 14 and 19 demonstrated a concentration-dependent inhibition of PAN endonuclease based on both FRET assay and SPR assay. Docking studies were also performed to elucidate the binding mode of 14 and 19 with the PAN protein and to identify amino acids involved in their mechanism of action, which were well consistent with the biological data. This finding was beneficial to laying the foundation for the rational development of more effective PAN endonuclease inhibitors.


Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators.

  • Vasiliki Lagou‎ et al.
  • Cell reports‎
  • 2018‎

The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.


Various Mobile Genetic Elements Involved in the Dissemination of the Phenicol-Oxazolidinone Resistance Gene optrA in the Zoonotic Pathogen Streptococcus suis: a Nonignorable Risk to Public Health.

  • Xingyang Dai‎ et al.
  • Microbiology spectrum‎
  • 2023‎

The rapid increase of phenicol-oxazolidinone (PhO) resistance in Streptococcus suis due to transferable resistance gene optrA is a matter of concern. However, genetic mechanisms for the dissemination of the optrA gene remain to be discovered. Here, we selected 33 optrA-positive S. suis isolates for whole-genome sequencing and analysis. The IS1216E element was present in 85% of the optrA-carrying contigs despite genetic variation observed in the flanking region. IS1216E-optrA-carrying segments could be inserted into larger mobile genetic elements (MGEs), including integrative and conjugative elements, plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated circularization occurred to form the IS1216E-optrA-carrying translocatable units, suggesting a crucial role of IS1216E in optrA spreading. Three optrA-carrying MGEs (ICESsuAKJ47_SSU1797, plasmid pSH0918, and prophage ΦSsuFJSM5_rum) were successfully transferred via conjugation at different transfer frequencies. Interestingly, two types of transconjugants were observed due to the multilocus integration of ICESsuAKJ47 into an alternative SSU1943 attachment site along with the primary SSU1797 attachment site (type 1) or into the single SSU1797 attachment site (type 2). In addition, conjugative transfer of an optrA-carrying plasmid and prophage in streptococci was validated for the first time. Considering the abundance of MGEs in S. suis and the mobility of IS1216E-optrA-carrying translocatable units, attention should be paid to the potential risks to public health from the emergence and spread of PhO-resistant S. suis. IMPORTANCE Antimicrobial resistance to phenicols and oxazolidinones by the dissemination of the optrA gene leads to treatment failure in both veterinary and human medicine. However, information about the profile of these MGEs (mobilome) that carry optrA and their transferability in streptococci was limited, especially for the zoonotic pathogen S. suis. This study showed that the optrA-carrying mobilome in S. suis includes integrative and conjugative elements (ICEs), plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated formation of optrA-carrying translocatable units played important roles in optrA spreading between types of MGEs, and conjugative transfer of various optrA-carrying MGEs (ICEs, plasmids, and prophages) further facilitated the transfer of optrA across strains, highlighting a nonignorable risk to public health of optrA dissemination to other streptococci and even to bacteria of other genera.


Priority index for critical Covid-19 identifies clinically actionable targets and drugs.

  • Zhiqiang Zhang‎ et al.
  • Communications biology‎
  • 2024‎

While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.


Paracrine effect of GTP cyclohydrolase and angiopoietin-1 interaction in stromal fibroblasts on tumor Tie2 activation and breast cancer growth.

  • Liye Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Cancer-associated fibroblasts (CAFs) play a key role in promoting tumor growth, acting through complex paracrine regulation. GTP cyclohydrolase (GTPCH) expression for tetrahydrobiopterin synthesis in tumor stroma is implicated in angiogenesis and tumor development. However, the clinical significance of GTPCH expression in breast cancer is still elusive and how GTPCH regulates stromal fibroblast and tumor cell communication remains unknown. We found that GTPCH was upregulated in breast CAFs and epithelia, and high GTPCH RNA was significantly correlated with larger high grade tumors and worse prognosis. In cocultures, GTPCH expressing fibroblasts stimulated breast cancer cell proliferation and motility, cancer cell Tie2 phosphorylation and consequent downstream pathway activation. GTPCH interacted with Ang-1 in stromal fibroblasts and enhanced Ang-1 expression and function, which in turn phosphorylated tumor Tie2 and induced cell proliferation. In coimplantation xenografts, GTPCH in fibroblasts enhanced tumor growth, upregulating Ang-1 and alpha-smooth muscle actin mainly in fibroblast-like cells. GTPCH inhibition resulted in the attenuation of tumor growth and angiogenesis. GTPCH/Ang-1 interaction in stromal fibroblasts and activation of Tie2 on breast tumor cells could play an important role in supporting breast cancer growth. GTPCH may be an important mechanism of paracrine tumor growth and hence a target for therapy in breast cancer.


Compound heterozygous mutations in electron transfer flavoprotein dehydrogenase identified in a young Chinese woman with late-onset glutaric aciduria type II.

  • Ying Xue‎ et al.
  • Lipids in health and disease‎
  • 2017‎

Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII patient.


Tanshinone IIA alleviates hypoxia/reoxygenation induced cardiomyocyte injury via lncRNA AK003290/miR-124-5p signaling.

  • Liye Chen‎ et al.
  • BMC molecular and cell biology‎
  • 2020‎

Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present study was to investigate the role of TSA in AMI and its underlying mechanism of action.


Identification of an Unconventional Subpeptidome Bound to the Behçet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1).

  • Liye Chen‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2020‎

Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behçet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position Ω). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ∼40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis.


GM-CSF Primes Proinflammatory Monocyte Responses in Ankylosing Spondylitis.

  • Hui Shi‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Objectives: GM-CSF is a pro-inflammatory cytokine with multiple actions predominantly on myeloid cells. Enhanced GM-CSF expression by lymphocytes from patients with Ankylosing Spondylitis (AS) has recently been described, however, its potential pathogenic role(s) in AS are unknown. Methods: The effects of GM-CSF on TNF, IL-23, and CCL17 production by blood, PBMCs and isolated CD14+ monocytes from AS patients and healthy controls (HCs) were studied using ELISA. Serum CCL17 and GM-CSF and T cell GM-CSF production were studied in AS patients including pre-and on TNFi therapy. Results: GM-CSF markedly increased TNF production by LPS-stimulated whole blood, peripheral blood mononuclear cells (PBMC) and purified monocytes from AS patients, with 2 h GM-CSF exposure sufficient for monocyte "priming." Blocking of GM-CSF significantly reduced the production of TNF by whole blood from AS patients but not HCs. GM-CSF priming increased IL-23 production from LPS-stimulated AS and HC whole blood 5-fold, with baseline and stimulated IL-23 levels being significantly higher in AS whole blood. GM-CSF also stimulated CCL17 production from AS and HC blood and CCL17 levels were elevated in AS plasma. GM-CSF could be detected in plasma from 14/46 (30%) AS patients compared to 3/18 (17%) HC. Conclusion: We provide evidence that GM-CSF primes TNF and IL-23 responses in myeloid cells from AS patients and HC. We also show CCL17 levels, downstream of GM-CSF, were elevated in plasma samples of AS patients. Taken together these observations are supportive of GM-CSF neutralization as a potential novel therapeutic approach for the treatment of AS.


Functional Genomic Analysis of a RUNX3 Polymorphism Associated With Ankylosing Spondylitis.

  • Matteo Vecellio‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2021‎

To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS).


A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis.

  • Tobias Schwerd‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Multiple cytokines, including interleukin 6 (IL-6), IL-11, IL-27, oncostatin M (OSM), and leukemia inhibitory factor (LIF), signal via the common GP130 cytokine receptor subunit. In this study, we describe a patient with a homozygous mutation of IL6ST (encoding GP130 p.N404Y) who presented with recurrent infections, eczema, bronchiectasis, high IgE, eosinophilia, defective B cell memory, and an impaired acute-phase response, as well as skeletal abnormalities including craniosynostosis. The p.N404Y missense substitution is associated with loss of IL-6, IL-11, IL-27, and OSM signaling but a largely intact LIF response. This study identifies a novel immunodeficiency with phenotypic similarities to STAT3 hyper-IgE syndrome caused by loss of function of GP130.


Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases.

  • Ariane Hammitzsch‎ et al.
  • Scientific reports‎
  • 2018‎

Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS. Here we investigate the therapeutic potential of four different JAK inhibitors on cells derived from AS patients and healthy controls, cultured in-vitro under Th17-promoting conditions. Levels of IL-17A, IL-17F, IL-22, GM-CSF and IFNγ were assessed by ELISA and inhibitory effects were investigated with Phosphoflow. JAK1/2/3 and TYK2 were silenced in CD4+ T cells with siRNA and effects analyzed by ELISA (IL-17A, IL-17F and IL-22), Western Blot, qPCR and Phosphoflow. In-vitro inhibition of CD4+ T lymphocyte production of multiple Th17 cytokines (IL-17A, IL-17F and IL-22) was achieved with JAK inhibitors of differing specificity, as well as by silencing of JAK1-3 and Tyk2, without impacting on cell viability or proliferation. Our preclinical data suggest JAK inhibitors as promising candidates for therapeutic trials in AS, since they can inhibit multiple Th17 cytokines simultaneously. Improved targeting of TYK2 or other JAK isoforms may confer tailored effects on Th17 responses in AS.


Genetic Susceptibility to Enteric Fever in Experimentally Challenged Human Volunteers.

  • Amber Barton‎ et al.
  • Infection and immunity‎
  • 2022‎

Infections with Salmonella enterica serovars Typhi and Paratyphi A cause an estimated 14 million cases of enteric fever annually. Here, the controlled nature of challenge studies is exploited to identify genetic variants associated with enteric fever susceptibility. Human challenge participants were genotyped by Illumina OmniExpress-24 BeadChip array (n = 176) and/or transcriptionally profiled by RNA sequencing (n = 174). While the study was underpowered to detect any single nucleotide polymorphisms (SNPs) significant at the whole-genome level, two SNPs within CAPN14 and MIATNB were identified with P < 10-5 for association with development of symptoms or bacteremia following oral S. Typhi or S. Paratyphi A challenge. Imputation of classical human leukocyte antigen (HLA) types from genomic and transcriptomic data identified HLA-B*27:05, previously associated with nontyphoidal Salmonella-induced reactive arthritis, as the HLA type most strongly associated with enteric fever susceptibility (P = 0.011). Gene sets relating to the unfolded protein response/heat shock and endoplasmic reticulum-associated protein degradation were overrepresented in HLA-B*27:05+ participants following challenge. Furthermore, intracellular replication of S. Typhi is higher in C1R cells transfected with HLA-B*27:05 (P = 0.02). These data suggest that activation of the unfolded protein response by HLA-B*27:05 misfolding may create an intracellular environment conducive to S. Typhi replication, increasing susceptibility to enteric fever.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: