2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Feasibility and efficacy of lung ultrasound to investigate pulmonary complications in patients who developed postoperative Hypoxaemia-a prospective study.

  • Chen Xie‎ et al.
  • BMC anesthesiology‎
  • 2020‎

Postoperative pulmonary complications (PPCs) and hypoxaemia are associated with morbidity and mortality. We aimed to evaluate the feasibility and efficacy of lung ultrasound (LUS) to diagnose PPCs in patients suffering from hypoxaemia after general anaesthesia and compare the results to those of thoracic computed tomography (CT).


Disrupted default mode network dynamics in recuperative patients of herpes zoster pain.

  • Ying Wu‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2020‎

Previous studies of herpes zoster (HZ) have focused on acute patient manifestations and the most common sequela, postherpetic neuralgia (PHN), both serving to disrupt brain dynamics. Although the majority of such patients gradually recover, without lingering severe pain, little is known about life situations of those who recuperate or the brain dynamics. Our goal was to determine whether default mode network (DMN) dynamics of the recuperative population normalize to the level of healthy individuals.


PRMT5 regulates colorectal cancer cell growth and EMT via EGFR/Akt/GSK3β signaling cascades.

  • Yongrong Yan‎ et al.
  • Aging‎
  • 2021‎

Emerging evidence shows that type II protein arginine methyltransferase 5 (PRMT5) serves as an oncoprotein and plays a critical role in many types of human cancer. However, the precise role and function of PRMT5 in human colorectal cancer (CRC) growth and epithelial-mesenchymal transition (EMT) are still unclear, and the related molecular mechanism and signaling axis remains largely obscure. Here, we show that PRMT5 is highly expressed in CRC cell lines and tissues. Using PRMT5 stable depletion cell lines and specific inhibitor, we discover that down-regulation of PRMT5 by shRNA or inhibition of PRMT5 activity by specific inhibitor GSK591 markedly suppresses CRC cell proliferation and cell cycle progression, which is closely associated with PRMT5 enzyme activity. Moreover, PRMT5 regulates CRC cell growth and cycle progression via activation of Akt, but not through ERK1/2, PTEN, and mTOR signaling pathway. Further study shows that PRMT5 controls EMT of CRC cells by activation of EGFR/Akt/GSK3β signaling cascades. Collectively, our results reveal that PRMT5 promotes CRC cell proliferation, cell cycle progression, and EMT via regulation of EGFR/Akt/GSK3β signaling cascades. Most importantly, our findings also suggest that PRMT5 may be a potential therapeutic target for the treatment of human colorectal cancer.


IgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival.

  • Yue Shi‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Patients with amyotrophic lateral sclerosis (ALS) often show hallmarks of type 2 diabetes mellitus (T2DM). However, the causal link between ALS and T2DM has remained a mystery. We now demonstrate that 60% of ALS patients with T2DM (ALS-T2DM) have sera that exaggerated K+-induced increases in cytosolic free Ca2+ concentration ([Ca2+]i) in mouse islet cells. The effect was attributed to the presence of pathogenic immunoglobulin Gs (IgGs) in ALS-T2DM sera. The pathogenic IgGs immunocaptured the voltage-dependent Ca2+ (CaV) channel subunit CaVα2δ1 in the plasma membrane enhancing CaV1 channel-mediated Ca2+ influx and [Ca2+]i, resulting in impaired mitochondrial function. Consequently, impairments in [Ca2+]i dynamics, insulin secretion, and cell viability occurred. These data reveal that patients with ALS-T2DM carry cytotoxic ALS-T2DM-IgG autoantibodies that serve as a causal link between ALS and T2DM by immunoattacking CaVα2δ1 subunits. Our findings may lay the foundation for a pharmacological treatment strategy for patients suffering from a combination of these diseases.


Cholinergic-Induced Specific Oscillations in the Medial Prefrontal Cortex to Reverse Propofol Anesthesia.

  • Lieju Wang‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

General anesthesia is a drug-induced reversible state comprised of altered states of consciousness, amnesia, analgesia, and immobility. The medial frontal cortex (mPFC) has been discovered to modulate the level of consciousness through cholinergic and glutamatergic pathways. The optogenetic tools combined with in vivo electrophysiological recording were used to study the neural oscillatory modulation mechanisms in mPFC underlying the loss of consciousness (LOC) and emergence. We found that optogenetic activation of both cholinergic and glutamatergic neurons in the basal forebrain (BF) reversed the hypnotic effect of propofol and accelerated the emergence from propofol-induced unconsciousness. The cholinergic light-activation during propofol anesthesia increased the power in the β (12-20 Hz) and low γ (20-30 Hz) bands. Conversely, glutamatergic activation increased the power at less specific broad (1-150 Hz) bands. The cholinergic-induced alteration to specific power bands after LOC had opposite effects to that of propofol. These results suggested that the cholinergic system might act on more specific cortical neural circuits related to propofol anesthesia.


Pan-cancer analysis identifies YTHDF2 as an immunotherapeutic and prognostic biomarker.

  • Weiwei Liu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2022‎

Background: N6-methyladenosine (m6A) modification is a dynamic and reversible post-transcriptional RNA modification prevalent in eukaryotic cells. YT521-B homology domain family 2 (YTHDF2) has been identified as a member of m6A reader protein involving in many vital biological processes, whereas its role and functional mechanisms in cancers remain unclear. Methods: Bioinformatics analyses were performed on multiple databases including GTEx, TCGA, GEO and Cbioportal to explore the connection between YTHDF2 expression and its genomic changes including tumor mutation burden, microsatellite instability and mismatch repair in 33 different cancer types. We also investigated the association of YTHDF2 expression with prognosis, immune infiltration, tumor microenvironment, immune checkpoints and chemokines. Besides, the correlation of YTHDF2 expression with copy number variation and promoter methylation was also studied in tumors compared with normal tissues. At last, we analyzed the protein-protein interacting network and related genes of YTHDF2 to enrich its potential functional mechanism in tumor development and progression. Real-time qPCR was used to verify the expression of YTHDF2-related genes in colorectal cancer cells, and immunohistochemical staining was adopted to verify immune infiltration in tissue sections from 51 hepatocellular carcinoma patients. Results: YTHDF2 was overexpressed in a majority of tumor types and associated with their poor overall survival, progression-free interval, and disease-specific survival. The correlation of YTHDF2 expression with tumor mutation burden, microsatellite instability and mismatch repair was also detected in most of the tumor types. Moreover, YTHDF2 might participate in the immune regulation through influencing the expression of immune checkpoint genes and the infiltration of immunocytes in tumor microenvironment. Notably, we demonstrated a positive correlation between YTHDF2 expression and the infiltration of CD8+ T cells and macrophages in many tumors, and it was verified in 51 clinic hepatocellular carcinoma tissues. In addition, the involvement of YTHDF2 in "Spliceosome" and "RNA degradation" were two potential functional mechanisms underlying its influence on tumor progression. The regulation of YTHDF2 on predicted genes has been verified in CRC cells. Conclusion: YTHDF2 might be a new therapeutic target and a potential biomarker of cancer immune evasion and poor prognosis.


ZNF382 controls mouse neuropathic pain via silencer-based epigenetic inhibition of Cxcl13 in DRG neurons.

  • Longfei Ma‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Nerve injury-induced changes of gene expression in dorsal root ganglion (DRG) are critical for neuropathic pain genesis. However, how these changes occur remains elusive. Here we report the down-regulation of zinc finger protein 382 (ZNF382) in injured DRG neurons after nerve injury. Rescuing this down-regulation attenuates nociceptive hypersensitivity. Conversely, mimicking this down-regulation produces neuropathic pain symptoms, which are alleviated by C-X-C motif chemokine 13 (CXCL13) knockdown or its receptor CXCR5 knockout. Mechanistically, an identified cis-acting silencer at distal upstream of the Cxcl13 promoter suppresses Cxcl13 transcription via binding to ZNF382. Blocking this binding or genetically deleting this silencer abolishes the ZNF382 suppression on Cxcl13 transcription and impairs ZNF382-induced antinociception. Moreover, ZNF382 down-regulation disrupts the repressive epigenetic complex containing histone deacetylase 1 and SET domain bifurcated 1 at the silencer-promoter loop, resulting in Cxcl13 transcriptional activation. Thus, ZNF382 down-regulation is required for neuropathic pain likely through silencer-based epigenetic disinhibition of CXCL13, a key neuropathic pain player, in DRG neurons.


Intracameral Microimaging of Maturation of Human iPSC Derivatives into Islet Endocrine Cells.

  • Kaixuan Zhao‎ et al.
  • Cell transplantation‎
  • 2022‎

We exploited the anterior chamber of the eye (ACE) of immunodeficient mice as an ectopic site for both transplantation and microimaging of engineered surrogate islets from human induced pluripotent stem cells (hiPSC-SIs). These islets contained a majority of insulin-expressing cells, positive or negative for PDX1 and NKX6.1, and a minority of glucagon- or somatostatin-positive cells. Single, non-aggregated hiPSC-SIs were satisfactorily engrafted onto the iris. They underwent gradual vascularization and progressively increased their light scattering signals, reflecting the abundance of zinc-insulin crystal packaged inside mature insulin secretory granules. Intracameral hiPSC-SIs retrieved from recipients showed enhanced insulin immunofluorescence in correlation with the parallel increase in overall vascularization and light backscattering during the post-transplantation period. This approach enables longitudinal, nondestructive and intravital microimaging of cell fates, engraftment, vascularization and mature insulin secretory granules of single hiPSC-SI grafts, and may offer a feasible and reliable means to screen compounds for promoting in vivo hiPSC-SI maturation.


Inositol hexakisphosphate primes syndapin I/PACSIN 1 activation in endocytosis.

  • Yue Shi‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic β cells and that its knockdown abrogates β cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) that phosphorylates syndapin I/PACSIN 1, thereby promoting interactions between syndapin I/PACSIN 1 and neural Wiskott-Aldrich syndrome protein (N-WASP) and driving β cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in β cells.


Nano-Photosensitizer Directed Targeted Phototherapy Effective Against Oral Cancer in Animal Model.

  • Lina Yu‎ et al.
  • International journal of nanomedicine‎
  • 2023‎

Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer.


Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac.

  • Yue Ma‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2023‎

This work aimed to compare the aroma characteristics of representative brandies with different grades from Yantai (one of the Chinese core production areas) and Cognac and to establish relationships between sensory descriptors and chemical composition. Descriptive analysis was performed with a trained panel to obtain the sensory profiles. Forty-three aroma-active compounds were quantified by four different methodologies. A prediction model on the basis of partial least squares analysis was performed to identify candidate compounds that were unique to a certain group of brandies. The result showed that brandies from Yantai could be distinguished from Cognac brandies on the basis of spicy, dried fruit, floral, and fruity-like aromas, which were associated with an aromatic balance between concentrations of a set of compounds such as 5-methylfurfural, γ-nonalactone, and γ-dodecalactone. Meanwhile, brandy with different grades could be distinguished on the basis of compounds derived mostly during the aging process.


Effects of dexmedetomidine on the release of glial cell line-derived neurotrophic factor from rat astrocyte cells.

  • Min Yan‎ et al.
  • Neurochemistry international‎
  • 2011‎

Dexmedetomidine (DEX) has been found to improve neuronal survival after transient global or focal cerebral ischemia in rats. Astrocyte cells may possess beneficial properties that promote neuronal recovery by secreting neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF). The purpose of this study was to investigate the effects of DEX on GDNF release from astrocytes and the possible mechanisms involved. Astrocyte cells were treated with DEX, and GDNF level in the conditioned media was determined by ELISA assay. The expression of CREB, p-CREB and PKCα was analyzed by Western blotting to explore the mechanisms involved in GDNF release. Our results showed that DEX stimulated GDNF release in a time- and dose-dependent manner; and this stimulation was blocked by the α2-adrenoreceptor antagonist yohimbine, but not by α1-adrenoreceptor antagonist prasozin, demonstrating that DEX induced GDNF release likely acts via activating the α2A adrenoreceptor. In addition, DEX-stimulated GDNF release was also blocked by the universal PKC inhibitor Ro-318220 and PKCα/β inhibitor Gö 6976, but not by PKCδ inhibitor rottlerin and PKCβ inhibitor LY333531. Interestingly, DEX also activated CREB phosphorylation, which was inhibited by Ro-318220, Gö 697 and ERK kinase inhibitor PD98059. Silencing CREB by siRNA decreased the DEX-stimulated GDNF release. In addition, the membrane translocation of PKCα was enhanced following DEX treatment. Furthermore, we found that DEX stimulated GDNF release rescued neurons against OGD-induced neurotoxicity; this effect was partly abolished by GDNF antibody. Thus, through α2A adrenergic receptors, DEX may activate astrocytes, and promote GDNF release to protect neurons after stroke, and this signaling is possibly dependent on PKCα and CREB activation.


Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

  • Caixia Gao‎ et al.
  • Scientific reports‎
  • 2016‎

Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.


Ethanol promotes alcohol-related colorectal cancer metastasis via the TGF-β/RUNX3/Snail axis by inducing TGF-β1 upregulation and RUNX3 cytoplasmic mislocalization.

  • Kehong Zheng‎ et al.
  • EBioMedicine‎
  • 2019‎

Alcohol intake is a well-known lifestyle risk factor for CRC, and an increasing number of studies have revealed that alcohol intake is also tightly associated with CRC metastasis. However, the effect of alcohol on CRC metastasis and its underlying mechanism remain unclear.


The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice.

  • Yu Wu‎ et al.
  • Nature communications‎
  • 2020‎

Reduced food intake is common to many pathological conditions, such as infection and toxin exposure. However, cortical circuits that mediate feeding responses to these threats are less investigated. The anterior insular cortex (aIC) is a core region that integrates interoceptive states and emotional awareness and consequently guides behavioral responses. Here, we demonstrate that the right-side aIC CamKII+ (aICCamKII) neurons in mice are activated by aversive visceral signals. Hyperactivation of the right-side aICCamKII neurons attenuates food consumption, while inhibition of these neurons increases feeding and reverses aversive stimuli-induced anorexia and weight loss. Similar manipulation at the left-side aIC does not cause significant behavioral changes. Furthermore, virus tracing reveals that aICCamKII neurons project directly to the vGluT2+ neurons in the lateral hypothalamus (LH), and the right-side aICCamKII-to-LH pathway mediates feeding suppression. Our studies uncover a circuit from the cortex to the hypothalamus that senses aversive visceral signals and controls feeding behavior.


MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons.

  • Longfei Ma‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Nerve injury-induced gene expression change in the spinal cord is critical for neuropathic pain genesis. RNA N6-methyladenosine (m6A) modification represents an additional layer of gene regulation. We showed that spinal nerve ligation (SNL) upregulated the expression of matrix metallopeptidase 24 (MMP24) protein, but not Mmp24 mRNA, in the spinal cord neurons. Blocking the SNL-induced upregulation of spinal MMP24 attenuated local neuron sensitization, neuropathic pain development and maintenance. Conversely, mimicking MMP24 increase promoted the spinal ERK activation and produced evoked nociceptive hypersensitivity. Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA Immunoprecipitation (RIP) assay indicated the decreased m6A enrichment in the Mmp24 mRNA under neuropathic pain condition. Moreover, fat-mass and obesity-associated protein (FTO) was colocalized with MMP24 in spinal neurons and shown increased binding to the Mmp24 mRNA in the spinal cord after SNL. Overexpression or suppression of FTO correlates with promotion or inhibition of MMP24 expression in cultured spinal cord neurons. In conclusion, SNL promoted the m6A eraser FTO binding to the Mmp24 mRNA, which subsequently facilitated the translation of MMP24 in the spinal cord, and ultimately contributed to neuropathic pain genesis.


Exercise Alleviates the Apolipoprotein A5-Toll-Like Receptor 4 Axis Impairment in Mice With High-Fat Diet-Induced Non-alcoholic Steatohepatitis.

  • Yang Yu‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Background: Apolipoprotein A5 (ApoA5), an important modulator of plasma and hepatic triglyceride metabolism, has been found to be downregulated by metformin to improve non-alcoholic fatty liver disease. Meanwhile, exercise has been recommended as a therapeutic strategy for non-alcoholic steatohepatitis (NASH). However, no study has yet determined whether exercise affects hepatic ApoA5 expression or the inhibition of ApoA5 to toll-like receptor 4 (TLR4). We herein examined the effects of exercise on hepatic ApoA5 expression and the relevance of ApoA5 and TLR4-mediated pathway in mice with high-fat diet (HFD)-induced NASH. Methods: Male C57BL/6J mice were built NASH model with high-fat diet for 12 weeks, and following mice were subjected to exercise for 12 weeks on a treadmill. Microscopy and enzyme-linked immunosorbent assay were used to measure histological analysis of liver and hepatic lipids, respectively. Quantitative real-time PCR and western blot were used to determined mRNA and protein levels of ApoA5 and TLR4-mediated nuclear factor kappa B (NF-κB) pathway components, respectively. ApoA5 overexpression plasmids transfected into mice to investigate the relevance of ApoA5 and TLR4. Results: 12 weeks of exercise remarkably alleviated HFD-induced hepatic lipid accumulation, inflammation, and fibrosis, as well as reduced serum lipopolysaccharide (LPS), hepatic TLR4, myeloid differentiation factor 88 (MyD88), and NF-κBp65 expression. Importantly, exercise did not reduce ApoA5 expression but instead enhanced its ability to suppress TLR4-mediated NF-κB pathway components by decreasing circulating LPS in our experiments involving transfection of ApoA5 overexpression plasmids and LPS interventions. Conclusion: The results demonstrated that exercise improved HFD-induced NASH by triggering the inhibitory effects of ApoA5 on the TLR4-mediated NF-κB pathway.


Bioinformatics Analysis Identifies p53 as a Candidate Prognostic Biomarker for Neuropathic Pain.

  • Yibo Gao‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Neuropathic pain (NP) is a type of chronic pain that is different from the common type of pain. The mechanisms of NP are still poorly understood. Exploring the key genes and neurobiological changes in NP could provide important diagnostic and treatment tools for clinicians. GSE24982 is an mRNA-seq dataset that we downloaded from the Gene Expression Omnibus database to identify key genes in NP. Differentially expressed genes (DEGs) were identified using the BRB-ArrayTools software and R. Functional and pathway enrichment analyses of the DEGs were performed using Metascape. A protein-protein interaction network was created and visualized using Cytoscape. A total of 123 upregulated DEGs were obtained. Among these genes, p53 was the node with the highest degree; hence, we validated it experimentally using a chronic constriction injury mouse model. Our results showed that overexpression of the p53 gene, and the subsequent increase in caspase-3 expression, in dorsal root ganglion neurons led to increased apoptotic changes in these neurons. p53 may therefore be partly responsible for the development of chronic constriction injury-induced NP.


Dimethyl Itaconate Attenuates CFA-Induced Inflammatory Pain via the NLRP3/ IL-1β Signaling Pathway.

  • Jiaqi Lin‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Itaconate plays a prominent role in anti-inflammatory effects and has gradually been ushered as a promising drug candidate for treating inflammatory diseases. However, its significance and underlying mechanism for inflammatory pain remain unexplored. In the current study, we investigated the effects and mechanisms of Dimethyl Itaconate (DI, a derivative of itaconate) on Complete Freund's adjuvant (CFA)-induced inflammatory pain in a rodent model. Here, we demonstrated that DI significantly reduced mechanical allodynia and thermal hyperalgesia. The DI-attenuated neuroinflammation was evident with the amelioration of infiltrative macrophages in peripheral sites of the hind paw and the dorsal root ganglion. Concurrently, DI hindered the central microglia activation in the spinal cord. Mechanistically, DI inhibited the expression of pro-inflammatory factors interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) and upregulated anti-inflammatory factor IL-10. The analgesic mechanism of DI was related to the downregulation of the nod-like receptor protein 3 (NLRP3) inflammasome complex and IL-1β secretion. This study suggested possible novel evidence for prospective itaconate utilization in the management of inflammatory pain.


Perioperative Transcutaneous Electrical Acupoint Stimulation for Postoperative Pain Relief Following Laparoscopic Surgery: A Randomized Controlled Trial.

  • Kai Sun‎ et al.
  • The Clinical journal of pain‎
  • 2017‎

This trial was conducted to assess the influence of transcutaneous electrical acupoint stimulation (TEAS) on postoperative pain intensity and the optimal time of TEAS application during perioperative period in patients undergoing laparoscopic surgery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: